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ABSTRACT
Advances in software parallelism and high-performance sys-
tems have resulted in an order of magnitude increase in the
volume of output data produced by the Community Earth
System Model (CESM). As the volume of data produced by
CESM increases, the single-threaded script-based software
packages traditionally used to post-process model output
data have become a bottleneck in the analysis process. This
paper presents a parallel version of the CESM atmosphere
model data analysis workflow implemented using the Swift
scripting language.

Using the Swift implementation of the workflow, the time
to analyze a 10-year atmosphere simulation on a typical
cluster is reduced from 95 to 32 minutes on a single 8-core
node and to 20 minutes on two nodes. The parallelized
workflow is then used to evaluate several new data-intensive
computational systems that feature RAM-based and flash-
based storage. Even when constraining parallelism to
limit the amount of file system space used by intermediate
temporary data, our results show that the Swift-based
implementation significantly reduces data analysis time.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; J.2 [Physical Sciences and Engineering]: Com-
puter Applications—Earth and atmospheric sciences

General Terms
Performance

Keywords
data-intensive computing, workflow orchestration, many-
task computing, climate modeling

1. INTRODUCTION
Earth System modeling involves the study of the processes

and interactions of earth system components such as the
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ocean, atmosphere, land, sea ice, biogeochemistry, and other
terrestrial systems. These models are typically run to
simulate long periods of time ranging from 10 to 10,000
years. The Community Earth System Model (CESM) [3]
can now utilize over 115,000 cores and generate in excess
of 1 TB of output data per simulation per wall-clock day
of execution on current supercomputers. While modest
diagnostic functions are performed when the models are
running, more comprehensive comparisons with existing
control simulations are only possible as a post-processing
step. However, the post-processing data analysis scripts
have typically remained single-threaded and have become
a bottleneck to scientific investigations. The ability to
effectively parallelize data analysis will allow for faster
comparisons and re-analyses, resulting in faster evaluation
of model operations and subsequent improvements.

In this paper, we present a parallel implementation of the
computational portion of the CESM Atmospheric Model
Working Group (AMWG) diagnostic package [1]. This
diagnostic package is typically run every few days to perform
analysis on a time segment of atmosphere model output
data that was produced on a separate supercomputer.
Historically, with lower-resolution data sets that have a
separation of 2.0◦ (∼200 km) between neighboring grid-
points, the analysis scripts may have taken 10 to 15 minutes
to execute. However, with the higher resolutions (e.g., 0.5◦)
now in use, the serial analysis scripts can require overnight
or longer to process a recently completed segment. Our goal
for this work is not to achieve the same level of parallelism
as the climate applications that generate the data or to
fundamentally rearchitect the manner in which we perform
analysis, but to reduce the time to perform analysis to
historical standards and to understand how architectural
features of data-intensive systems being deployed on the
TeraGrid can be leveraged by our workflow.

We parallelized our data analysis software using the Swift
scripting language [15]. Swift’s data-centric approach that
treats data in files as variables and automatically derives
workflow dependencies greatly simplified the creation of
the parallel analysis script. Moreover, Swift introduced
a useful layer of abstraction between the workflow, the
underlying system, and the executables that perform tasks.
The analysis script is now platform-agnostic, so the Swift en-
vironment can be configured to use the execution methods,
storage technologies, and processing components that are
most appropriate for each computational platform without
modifying the workflow definition.



We also investigate the ability of three different data-
intensive compute platforms to execute the analysis script.
The test platforms include the shared-memory SGI system
“Nautilus” at the National Institute for Computational
Science (NICS), the “Dash” cluster with a flash-based file
system at the San Diego Supercomputing Center (SDSC),
and the “Polynya” large-memory analysis server prototype
at the National Center for Atmospheric Research (NCAR).
We demonstrate that it is possible to achieve 7× speedup
by utilizing 4 nodes of Dash, making it again possible to
perform analysis jobs during a coffee break or lunch using
only a very modest increase to the computational resources
required. Further reductions in execution time are observed
when using flash or RAM-based file systems as temporary
storage for the workflow. However, as flash and RAM-
based storage is often limited in capacity more so than
high-performance spinning disk, we examine mechanisms to
constrain the parallelism and thus the temporary storage
requirements of the workflow in order to effectively utilize
high-performance storage resources.

The remainder of this paper is organized as follows.
Section 2 introduces Swift and related work. Section 3
describes the climate analysis workflow, the design of our
parallel implementation, and Swift features relevant to
the workflow. Section 4 presents results, first describing
scalability on clusters and then highlighting performance
using new storage technologies. The paper concludes with a
discussion of Swift, the data-intensive platforms, and future
work.

2. BACKGROUND AND RELATED WORK
A variety of tools and technologies exist to define, paral-

lelize, and automate the computational, data transfer, and
analysis and visualization components of scientific work-
flows. We considered two – Kepler [9, 4] and Swift [15, 12] –
as possible frameworks to implement a parallel version of the
AMWG diagnostic workflow. These tools take dramatically
different approaches to defining and structuring execution.
Kepler uses a workflow-centric approach where tasks are
explicitly ordered as the workflow is constructed. Swift
uses a data-centric approach where tasks are executed based
on detected dependencies in declared data structures and
procedures. For our workfow, which runs tasks based on the
cascade of data files in multi-step processing sequences, we
found Swift’s data-centric paradigm to be a better match.

Swift consists of a scripting language and execution
system that provides a simple mechanism to define data
objects and rules (“transformations”) that consume or pro-
duce data objects. Swift provides basic variables, such as
integers, floats, and strings, as well as opaque objects that
map to external data sets such as files on a disk device.
File mappers can point to explicitly named files, such as
input or output data, or to anonymous files used to link
processing stages with temporary files. Transformation
procedures, also referred to as atomic procedures, define how
external applications transform opaque objects. Based on
the input and output objects of transformation procedures,
Swift derives dependencies, and procedures are executed
(“triggered”) when all of their input objects are available.

Swift has been previously used to automate workflows in
a variety of disciplines including molecular dynamics, eco-
nomics, and computational neuroscience [12]. A precursor to
Swift, GriPhyN, was used to automate ensembles of climate

model runs [10], allowing the investigators to perform exper-
iments that were impractical without automated task man-
agement. Most of the prior work in the literature involves
workflows that are characteristic of “many-task computing”
[11], requiring the efficient execution of large numbers –
from thousands to millions – of short-running tasks. As
used for the iterative model execution/validation cycles
motivating this project, AMWG diagnostic runs execute
substantially fewer tasks (204-511) that manipulate large
files (820 MB each), making it a data-intensive task-oriented
workflow. However, one benefit of the parallelization is that
it can easily be used to analyze multiple decades or even
centuries, simply generating more tasks as required by the
data dependency flow.

3. DESIGN AND IMPLEMENTATION
The AMWG diagnostic package has been used to an-

alyze the output of the Community Atmosphere Model
(CAM), the atmospheric model component of CESM and its
predecessors including Community Climate System Model
(CCSM), since 1999 [1]. Written as a C-shell script,
the AMWG diagnostic package performs two phases of
processing. First, the statistics generation phase executes a
series of netCDF Operator (NCO) [5] commands that read
the monthly CAM output files and perform weightings and
summations to produce statistics files. The second phase of
processing executes NCAR Commmand Language (NCL)
[2] scripts that read the intermediate statistics files and
generate a variety of graphical plots arranged in an HTML
tree ready for publication on a webserver.

Preliminary timing of the serial AMWG script indicated
that the cost of the statistics generation phase relative
to the plot generation phase increases with resolution.
For example, in the case of the high-resolution 0.5◦ data
motivating this project, statistics generation consumed 70%
of the execution time. It is for this reason that we focused
on the statistics generation portion of the workflow. We
analyzed the C-shell-based AMWG script to extract the
workflow, implemented the workflow using Swift, and then
produced a modified version of the C-shell script that can
use the Swift implementation instead of the built-in serial
implementation if selected by the user.

The AMWG diagnostics statistics generation workflow
consists of four independent analysis chains for summer
(June, July, August; JJA), winter (December, January,
February; DJF), annual (ANN), and monthly (MON) statis-
tics (see Figure 1). The figure shows the number of task
executions, as well as the volume of data produced at each
step, where N is the number of years in the analysis and
each file is equal in size to a monthly output file from CAM.
For our benchmark 0.5◦ 10-year analysis, each input file is
820 MB (0.8 GB). The size of input files as well as total

Table 1: Model output (analysis workflow input)
data size for AMWG diagnostic benchmarking

Resolution Monthly File Size 10-Year Analysis Size

0.50◦ 820.1 MB 96.11 GB
1.00◦ 232.6 MB 27.26 GB
2.00◦ 51.3 MB 6.01 GB
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Figure 1: AMWG diagnostics statistics generation workflow (presented using representation based on
Wozniak and Wilde [14]). Example task count and data size values are for a 0.5◦ 10-year atmosphere (CAM)
analysis.

input data size for other resolutions is provided in Table
1. (Note that the size of 0.5◦ data is not quite four times
larger than the 1.0◦ because several unused variables were
identified and eliminated from the 0.5◦ output files.) In
the 0.5◦ example, the workflow starts with 96 GB of input
data, requires 271 task executions, and produces 204 GB of
intermediate data and 12 GB of output data. In practice,
a real analysis may consist of many invocations (or a single
invocation) of this workflow on 30-100 TB of data, such
as running a decadal analysis for every decade in multiple
hundred-year simulations for purposes of comparison.

To illustrate how the workflow is implemented in Swift, we
examine the apply weights (JJA) component of the workflow
from Figure 1. This component applies weighting factors to
input files from the summer months using the NCO operator

ncflint. Figure 2 is the simplified Swift code that implements
this component of the workflow and consists of three code
blocks. The first code block defines the transformation
procedure ApplyWeights that calls the NCO operator ncflint
to transform the input file f to the output file fout by
applying weights defined by weights. The second code block
constructs the list of names of the input files on which to
perform the ApplyWeights transformation. The third code
block calls the transformation procedure for each month.
Note that the third code block is contained in another
foreach loop (not illustrated in Figure 2) that iterates over
each year in the analysis. Because there are no dependencies
between each call to the ApplyWeights procedure, all 30 calls
can be executed in parallel as independent tasks.



#------------------------------------------------
# Transformation procedure ApplyWeights
#------------------------------------------------
(file fout)ApplyWeights(string n_t_var, string weights, string f)
{

app {ncflint "-O" "-C" "-x" "-v" n_t_var "-w" @strcat(weights,",0.0") f f @filename(fout);}
}

#------------------------------------------------
# Construct the list files for transformation
# tp: absolute pathname
# yr: year string
#------------------------------------------------
string names[]= [@strcat(tp,yr,"-06.nc"),@strcat(tp,yr,"-07.nc"),@strcat(tp,yr,"-08.nc") ];
file files[]<array_mapper;files=names>;

#--------------------------------------------------------------------
# Loop over the months June, July, and August to apply weights.
# (for input, force Swift to read the real file, not a staged copy)
#--------------------------------------------------------------------
string jja_weights[] = [".3260869681835", ".3369565308094",".3369565308094"];
int m[] = [1, 2, 3];
foreach mth in m {

# Apply transformation procedure to each month’s input
wgtf[mth-1]=ApplyWeights(ntVars, jja_weights[mth-1], @strcat("/",@files[mth-1]));

}

Figure 2: Example Swift code that implements the apply weights (JJA) component of the workflow.

For this workflow, it is important to highlight the ex-
pansion factor of intermediate data from the input (model
output) data. The first step in each analysis chain is
the application of weights based on the average number of
months in that analysis, so each of the four chains must
apply different weights to every file. This results in 2.5×
the input data volume being read and stored at the very
first step. Next, the weighted month files are combined to
produce aggregate statistics for the particular data product
(3 months for JJA or DJF, or 12 months for annual). The
remaining processing executes on substantially fewer files.
It is this expansion factor that stresses the storage and I/O
throughput components of most underlying computational
systems, as the workflow’s tasks read ∼444 GB of data and
write ∼194 GB of data to turn ∼100 GB of input into ∼10
GB of output.

3.1 Relevant Swift Features
Several of Swift’s features, including support for multi-

site execution through multiple submission providers and
automatic data staging, is particularly relevant to the imple-
mentation and performance of the workflow. It is necessary
to choose an execution provider appropriate for the target
environment (e.g., one node or a cluster) and configure the
file access methodology to match the file systems available
for input, temporary, and final output data.

Execution providers. Swift can execute tasks on
multiple resources, referred to as “sites”, simultaneously
using a variety of execution providers. Common providers
include just running tasks on the local node (localhost)
or submitting tasks to a cluster’s batch scheduler either
locally (qsub) or via Globus GRAM. Instead of submitting
every task to a queue individually, Swift can also execute
tasks using the Java Commodity Grid (CoG) Kit’s coasters
lightweight task dispatching framework. Coasters can in
turn be run on a single node locally or on multiple nodes

through a queue. The selection of the dispatch method is
independent from the script itself. We generally chose to use
coasters because it reliably limits the number of executing
tasks, allowing data describing workflow execution time vs.
number of cores to be easily collected. In the typical use case
on a cluster, the user starts the analysis in an interactive
shell on a login node, and the Swift script takes care of
submitting jobs to the back-end using the system’s queue.
On other systems, such as large shared-memory systems and
clusters with a few large nodes, the user submits the Swift
script to the queue and coasters runs a limited number of
tasks on the allocated resource directly.

Data staging. To make multi-site runs possible, along
with restart and recovery capabilities in the case of site
execution or file transfer faults, Swift uses a hierarchy of
storage locations. First, the directory on the computer from
which the user is running Swift serves as a home base for
files, and all data is staged from and to this run directory.
Second, every execution site has a directory used by all tasks
run by Swift on that particular site; this directory is thus
intended to be a high-performance file system shared by all
nodes at that site. Finally, in the case where individual
execution nodes at a site have independent storage (rather
than site-shared storage), Swift also supports staging to
the individual nodes themselves. This staging hierarchy is
combined with file and directory name mangling to ensure
that independent tasks, when run in parallel, execute in
separate directories and do not produce conflicts.

In the case of the AMWG workflow, the use of indepen-
dent staging directories (one for the Swift run, and one
for the target site) is problematic because in practice the
workflow is run on only one system – the analysis system
attached to the file system with the data. In that case, the
directory from which Swift is run and the Swift site directory
used for staging are on the same parallel file system. With
independent staging directories, the volume of data that
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Figure 3: Parallelism constraint variants for the
Swift-based AMWG diagnostic statistics workflow.
Version (a) removes no files and enforces no process-
ing order; versions (b) and (c) remove intermediate
files and order processing phases.

must be stored on the same file system doubles from 204
GB to 408 GB for our workflow, and extensive amounts of
time are spent copying data between two directories on the
same file system. To avoid this unnecessary duplication,
we used Swift’s support for Collective Data Management
(CDM) [13, 14] to configure Swift to access intermediate files
directly with no staging. Use of Swift’s CDM capability had
a profound positive impact on both disk space usage and
execution time for our workflow.

3.2 Workflow Temporary Data Management
As an execution framework designed to coordinate the ex-

ecution of file-processing tasks, Swift takes the safe approach
of not deleting any files, including anonymous intermediate
files. Swift also executes procedures in a trigger-like fashion,
where any elegible task can be run, rather than scheduling
tasks on subsequent dependencies. Because the AMWG
workflow can require hundreds of gigabytes of temporary
storage space if all temporary files are retained through
the duration of the analysis, the volume of temporary data
can become a problem on systems with limited or quota-
controlled temporary storage. Moreover, it makes it very
difficult to take advantage of systems with special high-
performance intermediate storage in small capacities.

With the goal of constraining intermediate data storage,
reducing file system contention, and cleaning up unneeded
temporary space while a run is in progress, we designed two
alternate versions of the analysis script. These alternate
versions introduce extra dependencies that artificially order
some of the task chains and remove all of the intermediate
files after each task chain is complete (see Figure 3). The
original version (a) has no forced ordering and does not
remove any files. In the alternate versions, the analysis
steps are followed by dependencies that remove intermediate
output files that are no longer needed. To further constrain
the generation of intermediate files, the processing of each
year in each chains is ordered. The first alternate version (b)
forces each year in the JJA, ANN, and DJF analysis chains
to run in sequence so that an entire year must be completed
in JJA before that year begins processing in ANN. This
effectively changes the task elegibility search from breadth-
first to depth-first for a portion of the workflow, constraining
the parallelism and reducing the use of storage space.
Functional testing shows that the alternate versions do
in fact remove temporary files and constrain intermediate
storage space from 204.2 GB (version a) to 123.3 GB and
130.5 GB for versions (b) and (c). However, as will be

described in the Results section, these constraints do not
reduce the parallel performance with statistical significance
for up to 64 processors.

3.3 Workflow Parallelism and Efficiency
To illustrate the maximum parallelism characteristics of

the workflow, we use Gantt charts combined with disk
utilization plots that show the execution of tasks and the
use of storage as the workflow executes. The Gantt charts
describe how the workflow’s data dependencies constrain
the available parallelism and in turn limit the efficiency
achievable with an increasing number of processors. For
example, when Swift is configured to queue all ready tasks as
soon as they are triggered, and 64 processors are available,
large gaps of unused processors emerge (see Figure 4(a)).
However, when Swift is configured to submit no more than
8 tasks for execution to 8 available cores, all processors
remain busy (see Figure 4(b)). Thus, processors sit idle if
the number of available processors exceeds the least upper
bound of parallelism among all of the workflow’s stages,
which occurs between 8 and 64 cores for this workflow.

4. RESULTS
We evaluate the performance of the Swift-based parallel

analysis workflow on ten years of output data from a 0.5◦

run of CAM on a variety of computer platforms. All
timing exeriments were performed at least three times, with
standard deviations plotted. The workflow is executed on
the following platforms:

• Dash [7], a cluster targeted for data-intensive com-
puting at SDSC, consisting of 32 nodes each with dual
quad-core 2.4 GHz Intel Nehalem processors and 48
GB of RAM per node. Half of Dash is configured as
a traditional 16-node cluster but with a single 64 GB
flash drive in each node. The other half of the system is
aggregated into a single system image using ScaleMP’s
virtual shared memory (vSMP) product, providing 960
GB of flash storage and a RAM-based file system
as well. Persistent storage on Dash is provided by
TeraGrid’s GPFS-WAN, hosted at SDSC.

• Nautilus, an SGI Altix UV 1000 at NICS, containing
1024 Nehalem EX cores at 2.0 GHz with 4 GB
RAM/core. Persistent storage on Nautilus is provided
by a local GPFS file system.

• Polynya, a single-node prototype for a large-memory
data analysis and visualization cluster at NCAR. The
server used for this experiment contains 32 Intel Ne-
halem cores and 1 TB of RAM. Half of the memory has
been used to create a 512 GB RAM disk using tmpfs.
Persistent storage is provided by a GPFS file system
shared with NCAR’s Blue Gene/L supercomputer.

4.1 Serial and Variant Performance
We first established the baseline performance of the Swift-

based workflow, as well as the performance of the variants
that constrain workflow parallelism and remove intermediate
files, using the portion of Dash that is configured as a typical
Linux cluster. In this hardware configuration, Dash uses the
GPFS disk-based file system to store input, intermediate,
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Figure 4: Task execution Gantt charts and disk usage plots for a 64-core system with no Swift throttling
(4(a)) and an 8-core system throttled to 8 tasks (4(b)). The 64-core plot shows the achievable parallelism
limited only by dependencies; the 8-core plot shows core allocation efficiency by limiting the resource request.



and output data, and does not make use of flash memory
or the vSMP single-system-image technologies. This pro-
vides a useful characterization of the parallel performance
achievable on typical commodity clusters absent specialized
data-intensive hardware components.

The use of Swift introduces a small amount of task
management overhead that is visible in runs that have been
constrained to only one processor. The original serial C-
shell version requires 96 minutes to run on Dash. The
version written in Swift, constrained to one processor,
requires an average of 102 minutes, a slowdown of 6%. This
result demonstrates that Swift overhead is modest for our
workflow.

Constraining workflow parallelism and removing inter-
mediate temporary files using the variants described in
Section 3.2 do not reduce the performance with statistical
significance at the 95% confidence level. The mean execution
time of the version without the file removals is always faster
than the versions that remove the files – it is, after all,
extra work – but this difference is not always statistically
significant. The extra time required to remove the files
within the workflow is thus “in the noise”, and removing
them within the workflow avoids the need to clean-up the
temporary files manually after the workflow completes. We
therefore chose to use version (b) for the remainder of our
timing experiments.

4.2 Parallel Performance
The primary result of our work is an examination of

the parallel performance of the Swift-based workflow on
three current platforms–SDSC Dash (without vSMP), NICS
Nautilus, and NCAR Polynya–all configured to use their
high-capacity disk-based storage systems for input, output,
and intermediate data (see Figure 5(a)). The results show
that Dash and Nautilus generally have similar performance
at 1, 8, and 16 tasks, reducing execution time from ∼102
minutes to ∼30 minutes, with Nautilus having slightly better
performance at 8 tasks and Dash for higher processor counts.

The single-core results suggest that single processes on
Dash and Nautilus have approximately the same throughput
to disk, which is also significantly better than can be
achieved on Polynya. This is consistent with the fact that
both Dash and Nautilus are both newly deployed systems
and that Polynya uses disk subsystem components that are
approximately four years old. The parallel performance
shows that while Nautilus has slightly better execution time
than Dash on 8 cores (one Dash node), the trend reverses at
greater than 16 cores. We suspect that at small core counts,
Nautilus benefits from access to a larger number of network
connections to disk than Dash due to its single-system-
image and high-performance shared-memory interconnect.
However, once Dash begins to utilize multiple nodes and
thus more connections to the disk system, its execution time
is lower.

To better understand the interaction of the workflow, its
parallelism, and the storage technology on performance, we
ran additional tests on the Polynya server using a RAM-
based file system in three configurations that vary the usage
of disk and RAM for storage (see Figure 5(b)). The first
configuration (Spinning Disk), described previously, uses
GPFS for all storage. The second configuration (Hybrid)
reads input from GPFS, but stores all temporary and
intermediate data as well as final output on a RAM disk.

Figure 6: Execution time of the parallel workflow
for 0.5◦ and 1.0◦ data sets on the NCAR Polynya
server using GPFS and prestaged RAM storage.

This represents the expected use case for the Swift-based
implementation in production. For the third configuration,
we prestaged the input data to RAM disk (RAM Disk).
The prestaged configuration does not represent a typical
use case, because multiple consumers of the data are not
typically co-scheduled. However, it is useful to emphasize
the performance impact of reading data from disk. On
32 cores of Polynya, the execution time of our workflow is
reduced from 56 minutes for the disk configuration to 16
minutes for the hybrid configuration. In the prestaged case,
the workflow executes in 4 minutes.

We interpret overall performance as a combination of node
performance, aggregate I/O performance, and workflow
parallelism. At small processor counts (e.g., np ≤ 8), all
processors are busy, so the results are based on standard
computational and I/O performance. As the processor
count becomes large, the executing tasks are bound by
the underlying platform’s I/O performance. The shape of
the curve thus describes the workflow’s parallelism and its
asymptotically decreasing efficiency. We therefore observe
that on Polynya, the curves reduce to asymptotes based on
the workflow’s use of the high-performance storage, such
that Polynya’s older storage is outperformed by Dash and
Nautilus.

4.3 Resolution, Throughput, and Performance
While most of our work on the AMWG workflow has

emphasized the high-resolution 0.5◦ data, a substantial
amount of production analysis is currently performed using
data at a lower 1.0◦ resolution that is approximately four
times smaller. We therefore compared the performance of
the workflow with both resolutions using all-disk and pre-
staged configurations on Polynya to highlight the effect of
resolution on performance (see Figure 6). The results show
that for the two resolutions, the shapes of the curves using
each storage system are similar, but the lower resolution
approaches a lower asymptote. This is not surprising,
as the workflows execute exactly the same pattern and
number of tasks for each resolution thus producing the same



1 8 16 24 32 40 48 56 64
Tasks

4

8

16

32

64

128

256
T
im

e
 (

m
in

)

Dash Nautilus Polynya

(a) Systems using GPFS Disk Storage

1 8 16 24 32
Tasks

4

8

16

32

64

128

256

T
im

e
 (

m
in

)

Spinning Disk Hybrid RAM Disk

(b) Polynya Server using GPFS and RAM Storage

Figure 5: Parallel performance of the AMWG workflow on three major platforms using disk-based storage
(5(a)) and on a single server using GPFS and RAM storage (5(b)). The hybrid configuration reads raw data
from spinning disk and writes temporary and output data to RAM disk – the typical production configuration.

parallel efficiency characteristics, but the lower resolution
case manipulates less data and therefore requires less I/O
time leading to the offset between the resolution cases.

4.4 Preliminary Results with Dash Features
The results from the previous three subsections demon-

strate that our workflow has similar performance on Nau-
tilus and the portion of Dash configured as a Linux cluster,
and that Polynya’s RAM-based file system provides sub-
stantial performance benefit over both. However, the RAM-
based storage solution that Polynya provides is potentially
cost prohibitive. Dash’s prototype architecture includes two
features that might provide performance improvements in
a more cost-effective solution: a flash-memory (solid-state
disk) file system, and ScaleMP software-based single-system-
image virtualization that includes a distributed RAM-based
disk storage.

Given the high efficiency demonstrated with 8 processors,
we first tested the effect of using flash memory storage on a
single node of Dash for temporary and output data, while
reading the input data from disk (a hybrid configuration sim-
ilar to production use). We used the 1.0◦ test case because
even with the constrained parallelism, the temporary data
for the 0.5◦ test case could not fit in a single 64 GB flash
disk. The use of flash disk reduced the time to execute the
analysis from 9.5 minutes to 7.3, a speedup of 1.3. A similar
speedup (1.5) is obtained on the lower-resolution 2.0◦ data
set.

We also attempted to run the 0.5◦ and 1.0◦ workflows on
Dash’s vSMP node that would allow access to much more
flash memory as well as a large RAM-based file system.
Unfortunately, the external I/O throughput available on the
early-evaluation prototype node was insufficient to execute
the workflow in a realistic fashion using either an all-disk or
hybrid configuration. We prestaged the data to the vSMP-
based RAM disk manually (requiring ∼45 minutes) and
were able to execute the workflow, but execution times were
not competitive with the previous results on Dash without

vSMP. Even without the special flash or memory file systems
available in the vSMP configuration, Dash already provided
competitive performance compared to the other systems.

As we concluded development on Dash, we worked with
SDSC to evaluate preliminary network, I/O, and file system
configurations in search of additional performance improve-
ments. For example, we ran the workflow using SDSC’s
prototype of the RNA Networks “MVX memory cloud”
technology used to create a RAM disk on one node by
aggregating memory from multiple separate nodes. Using
the remote memory, the 1.0◦ test case required 172.6 seconds
on MVX compared to 129.4 on Polynya, and the 0.5◦ test
case required 646.8 seconds on MVX compared to 481.9 on
Polynya. These tests show that the MVX-provided remotely
aggregated RAM disk is competitive with the single large-
RAM system; in the future, we are planning on running tests
in other configurations to further examine the application of
this technology to the workflow.

5. DISCUSSION
The parallel implementation of the AMWG diagnostic

workflow highlights the different factors influencing perfor-
mance and scalability of typical computation-bound tightly-
coupled parallel applications (such as the climate model
generating the data used here) versus data-intensive analysis
workflows. Our data analysis workflow is heavily dependent
on each node’s throughput to storage, including factors
such as the type and number of network connections, their
throughput, and the ability of the system’s expansion bus
to achieve that throughput. The scalability of our data-
intensive workflow is limited by I/O performance versus
computation-bound problems which are limited by floating-
point and memory subsystem performance. Scalability of
this workflow is also bound by the number of available tasks
and their dependencies. Our workflow, which represents
one particular invocation of the AMWG diagnostics scripts,
consists of only 204 short data transformation tasks grouped
in analysis chains with limited internal parallelism. We



rule .*.nc DEFAULT
rule .* DIRECT /scratch/34568/swift-tmp

Figure 7: A Swift CDM configuration file for
controlling data management.

believe that the most important consideration is that the
parallel workflow can use even small numbers of nodes and
processors to achieve a significant improvement in execution
time. Moreover, the same script and infrastructure can
be used to execute the diagnostic for multiple years, with
scalability limited only by the number of data files and the
size of the system’s scratch space.

Based on our experience using Swift to automate a data-
intensive workflow, we have identified several features that
may be beneficial to the language and execution system.
First, our workflow generates a large number of anonymous
temporary files that are used to connect two workflow steps
together and are then never referenced again. Swift only
deletes temporary files after the workflow has completed.
In the case of our workflow, this means that twice the
input data size is generated and left on disk in temporary
directories. While we added artificial dependencies to our
scripts to trigger procedures that call rm to remove files
after they are no longer needed, the automatic deletion of
temporary files could be provided by Swift as a garbage
collection feature. Indeed, this feature has been added to
the Swift source code repository between our experiments
and this publication.

Another possible improvement in the Swift runtime is sup-
port for customizable, or dependency-aware, task schedul-
ing. In our application, we occasionally encountered sit-
uations where Swift would execute tasks that generated
few dependencies, leaving processors idle before triggering
a task that generated more work. It may be beneficial
if the execution system could estimate the task branching
factor among the tasks elegible for execution and run those
that might produce more work first, or use profile-based
scheduling, to avoid situations where the number of running
tasks artificially drops due to dependency ordering.

Finally, Swift may benefit from improved integration of
language support for data management. Swift’s collective
data management (CDM) feature, described in Section 3.2,
was critical to achieving the obtained performance and
scalability of our workflow. our of eight cores on a node.
Removing the However, its usage is not integrated with the
declaration of opaque file types in SwiftScript itself. For
example, a CDM configuration file similar to those used for
our workflow contains two rules (see Figure 7). The first rule
indicates that all files that match that pattern ∗.nc should
be staged or copied from their original location to the site
specific directory. This rule is necessary to make sure that all
output files are returned to the desired final output location.
The second rule indicates that all other files should not be
staged but should use the direct method from the site run
directory “/scratch/34568/swift-tmp”. An unwanted side-
effect of the first rule is that it matches the input files in
addition to the output files. This causes all input to be
staged-in from the input directory to the Swift site run
directory before task execution. We avoided the unnecessary
stage-in of read-only data in the Swift code in Figure 2 by
treating read-only input files as strings containing file names,

and explicitly prepending a leading forward slash. More
transparent and integrated data management control would
be beneficial.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we described the parallelization of a

workflow that analyzes the output of the atmospheric
model component of a coupled earth system model. The
parallelization of the AMWG diagnostic package statistics
generation workflow was greatly simplified through our use
of the Swift data-centric scripting language. To the best
of our knowledge, our workflow represents the most data-
intensive use of Swift currently attempted. In particular,
the size of our input files are quite large relative to the com-
putational cost of each task in the workflow, so our workflow
places a premium on precise control of data movement. We
found Swift to be a powerful and efficient means to describe
and execute the workflow, and based on our experiences,
we provided several suggestions on how the Swift language
could be improved through enhanced data management
support for input and temporary files. Our manual addition
of remove statements to reduce temporary data storage
requirements was a reminder of how the construction of
explicit dependencies within a workflow can be quite painful
and time consuming.

We also evaluated the ability of several data-intensive
systems to execute our data analysis workflow. Our most
important results demonstrated that this workflow, which
executes only 511 tasks in the tested configuration, can
obtain substantial reductions in execution time through
parallelism with only 8 or 16 processors on typical cluster
nodes. Moreover, we identified a hybrid execution mode
where input is read from disk and temporary data is placed
on high-performance RAM-based storage, that can further
reduce execution time even in realistic production scenarios.

In the future, we plan to finalize the integration of this
work with the broader AMWG diagnostic suite such that it
may be easily used by other researchers for realistic produc-
tion scenarios. First, we are preparing Swift configurations
for a variety of systems at resource providers popular with
our colleagues and other climate research groups. Second,
we are working with collaborators in the ParViz project [8]
to expand the parallelization of the AMWG diagnostic suite
to include the plot generation stage. These changes will
make the Swift-parallel AMWG diagnostic suite quite useful
for use by a broad community of researchers. Given our
positive experience with Swift, we believe this will spur
greater adoption of Swift for analysis workflows in our
community.

We are also investigating methods to insert the parallel
AMWG diagnostic in production workflows while reducing
the use of spinning disk. For example, when the data is
prestaged to Polynya’s RAM disk, a speedup of 52× can
be obtained versus the original serial implementation. We
envision reading the data from the supercomputer’s disk just
once to stream it to Polynya’s RAM disk. Once on Polynya,
the data would be simultaneously stored to the long-term
archive while being analyzed using the parallel diagnostics
suite. This would reduce the use of disk storage steps in
the overall workflow to just one, and the cost of the analysis
would be absorbed by the cost of the transfer and upload to
archive.



Finally, this work automated only the data analysis
component of a much larger scientific workflow that includes
execution at one supercomputer center, analysis at another,
storage at both, and data transfers between the two. In the
future, we plan to broaden our investigation of automation
to the overarching workflow itself. In particular, we plan to
examine strategies and tools, such as Kepler and NCAR’s
existing Earth System Grid infrastructure [6], that could be
used to orchestrate all of the components of the scientific
workflow.
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