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Abstract. We are concerned with the following problem: How do we
allow a community of users to access and process diverse data stored in
many different formats? Standard data formats and data access APIs
can help but are not general solutions because of their assumption of
homogeneity. We propose a new approach based on a separation of con-
cerns between logical and physical structure. We use XML Schema as a
type system for expressing the logical structure of datasets and define a
separate notion of a mapping that combines declarative and procedural
elements to describe physical representations. For example, a collection
of environmental data might be mapped variously to a set of files, a rela-
tional database, or a spreadsheet but can look the same in all three cases
to a user or program that accesses the data via its logical structure. This
separation of concerns allows us to specify workflows that operate over
complex datasets with, for example, selector constructs being used to se-
lect and initiate computations on sets of dataset elements—regardless of
whether the sets in question are files in a directory, tables in a database,
or columns in a spreadsheet. We present the XDTM design and also the
results of application experiments with an XDTM prototype.

1 Introduction

In large open environments, users need to be able to access data stored in many
different formats. An answer to this problem is the standardization of data for-
mats and associated APIs. For example, XML is playing an increasingly im-
portant role in data exchange; FITS, the Flexible Image Transport System, is
a standard method for storing astronomical data; and HDF5, the Hierarchical
Data Format [5], is a file format (and associated software library) for storing
large and complex scientific and engineering data.

Data and format standards are helpful in this context but are not general
solutions in today’s heterogeneous networked environments. Open environments
must deal with legacy data, coexisting and evolving standards, and new data
formats introduced to meet the needs of new applications or devices. Above all,
open environments must be able to cope with evolution in data formats, so that
ideally (for example) computational procedures do not require major changes to
work with new formats. Format neutrality is hard to achieve, however, and we
often encounter computational procedures that are no longer operational simply



because their target data format no longer exists. The problem is that format
dependency prevents code reuse over datasets that are conceptually identical,
but physically represented differently.

BFD [11] and DFDL [2] offer partial solutions to this problem based on
binary format descriptions: BDF offers converters from binary to some XML-
based universal representation (and vice versa), whereas DFDL provides uniform
access APIs to binary. They do not address the variety of existing datasets
formats, however, since they focus on legacy binary formats. Moreover, they
incur potentially expensive conversion cost to XML (both in time and space), and
they do not promote reuse of computational procedures for logically equivalent
datasets.

We propose a new approach to this problem based on a separation of concerns
between logical and physical structure. We use a type system for expressing the
logical structure of datasets, and we define a separate notion of a mapping to
describe their physical representations. For example, a collection of environmen-
tal data might be mapped variously to a set of files, a relational database, or a
spreadsheet but can look the same in all three cases to the user who accesses
the data via its logical structure.

To explore the feasibility and applicability of these ideas, we define (and
introduce here) XDTM, the XML Dataset Type and Mapping system. XDTM
provides a two-level description of datasets: a type system that characterizes
the abstract structure of datasets, complemented by a physical representation
description that identifies how datasets are physically laid out in their storage.
We adopt XML Schema [13, 3] as our type system; this technology has the ben-
efit of supporting some powerful standardized query language that we use in
selection methods. XDTM allows the specification of computational procedures
capable of selecting subsets of datasets in a manner that is agnostic of physical
representation.

Working within the GriPhyN project (www.griphyn.org), we have produced
an implementation of XDTM and used it to manipulate datasets produced by
the Sloan Digital Sky Survey (SDSS) [12]. Throughout this paper we use SDSS
examples to demonstrate that the separation of concerns enabled by XDTM does
indeed allow us to specify workflows that operate over complex datasets with,
for example, selector constructs being used to select and initiate computations
on sets of dataset elements—regardless of whether the sets in question are files,
directories, or XML structures.

This paper is organized as follows. Section 2 reviews applications that use
complex datasets and examines limitations that prevent their easy manipulation.
Section 3 discusses the distinction between structure and format, while Section
4 describes how a type system, and specifically XML Schema, can be used to
specify datasets structures. Section 5 focuses on a mapping that allows us to
specify how a dataset’s structure can be mapped to a physical representation.
Section 6 overviews our prototype implementation. Section 7 discusses related
work.



2 An Application Manipulating Complex Datasets

We introduce an application that has strong requirements for complex multi-
format datasets. The Sloan Digital Sky Survey [12] maps one-quarter of the
entire sky, determining the positions and absolute brightnesses of more than
100 million celestial objects, and measures the distances to more than a million
galaxies and quasars. Data Release 2, DR2, is the second major data release and
provides images, imaging catalogs, spectra, and redshifts for download.
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Fig. 1. Excerpt of DR2 (http://das.sdss.org/DR2/data)

We focus here on the directory imaging appearing at the root of the DR2
distribution, which we display in Figure 1. Inside it, we find a collection of di-
rectories, each containing information about a Run, which is a fraction of a strip
(from pole to pole) observed in a single contiguous observing pass scan. Within a
Run, we find Reruns , which are reprocessings of an imaging run (the underlying
imaging data is the same, but the software version and calibration may have
changed). Both Runs and Reruns directories are named by their number: in this
paper, we will take Run 1239 and Rerun 6 as an example to focus the discussion.
Within a Rerun directory, we find a series of directories, including objcs, ob-
ject catalogs containing lists of celestial objects that have been cataloged by the
survey. Within objcs, we find six subdirectories, each containing a Camcol , that
is, the output of one camera column as part of a Run. In each Camcol, we find
collections of files in the FITS format, the Flexible Image Transport System, a
standard method of storing astronomical data. For instance, the fpObjc files are
FITS binary tables containing catalogs of detected objects output by the frames
pipeline. For these files, we see that the Run number (1239) and other infor-
mation are directly encoded in the file name. From this brief analysis of a DR2
subset, we can see that DR2 is a complex hierarchical dataset, in which metadata
is sometimes directly encoded in filenames, as illustrated for Run, ReRun, and
CamCol directories and for all FITS files. Furthermore, DR2 is available in mul-
tiple forms : some institutions have DR2 available from their file system; it can
also be accessed through the rsync and http protocols; alternatively, sometimes,
astronomers package up subsets directly as tar balls, such as specific Runs, for
rapid exchange and experimentation.



3 Distinguishing Structure from Format

XML Schema, standardized by the World Wide Web Consortium [13, 3], provides
a means for defining the structure, content, and semantics of XML documents.
We assert in this paper that XML Schema can also be used to express the struc-
ture complex datasets. Increasingly, XML is being used as a way of representing
different kinds of information that may be stored in diverse systems. This use of
XML implies not that all information needs to be converted into XML but that
the information can be viewed as if it were XML. Such an overall approach is
also supported at the programming level. The Document Object Model (DOM)
[9] is an application programming interface for well-formed XML documents: it
defines the logical structure of documents and a programmatic way of accessing
and manipulating a document.

Against this background, we decided to adopt a multilevel explicit represen-
tation of information and propose to make the physical representation (i.e., the
format) of datasets an explicit notion, to coexist with the abstract structure of
the dataset (i.e., its type). We strive to specify format separately from type,
so that a dataset of a given type can be encoded into different physical repre-
sentations. Programs that operate on datasets can then be designed in terms
of dataset types, rather than formats, but can be executed regardless of the
physical representations.

4 Type System for Describing Datasets Structure

We now introduce the type system that we use to specify the abstract structure
of datasets. As in programming languages, we consider two forms of aggrega-
tions: arrays make their contents referenceable by indices, whereas records (or
structures) make them referenceable by their name. As far as atomic types are
concerned (i.e., types that cannot be decomposed into smaller elements), we
consider the usual primitive types found in programming languages, such as
int, float, string, and boolean. Furthermore, there exist numerous formats for
encoding well-defined datasets, such as FITS files in astronomy or DICOM for
medical imaging. We want such existing formats to be reusable directly, which
means that such datasets should also be viewed as primitive types.

The type system must be language independent so that it can describe the
structure of datasets independently of any programming or workflow language.
All the features we discussed above (and more)—namely, array and recordlike
aggregation, type naming, and attributes—are supported by XML Schema [13,
3]. We therefore propose to adopt the XML Schema, since it brings along other
benefits by its standardized nature.

We show in Figure 2 an excerpt of the XML Schema for DR2. (For con-
ciseness, we keep namespaces implicit in this paper.) The schema specifies that
DR2 is composed of a single element named imaging of type Imaging. The com-
plex type Imaging is a sequence of elements run, of type Run, with a variable
(and possibly unbounded) number of occurrences. The complex type Run is a



sequence of elements rerun, of type Rerun. Note that a mandatory attribute is
being specified for type Run, with name number and natural value.

<xs:schema targetNamespace="http://www.griphyn.org/SDSS" 

                      xmlns:xs="http://www.w3.org/2001/XMLSchema" 

                      xmlns="http://www.griphyn.org/SDSS">

    <xs:element name="imaging" type="Imaging"/>

    <xs:complexType name="Imaging">

           <xs:sequence>

                  <xs:element name="run" type="Run" minOccurs="0" maxOccurs="unbounded"/>

           </xs:sequence>

    </xs:complexType>

    <xs:complexType name="Run">

           <xs:sequence>

                  <xs:element name="rerun" type="ReRun" minOccurs="0" maxOccurs="unbounded"/>

           </xs:sequence>

           <xs:attribute name="number" type="xs:nonNegativeInteger" use="required"/>

    </xs:complexType>

</xs:schema>

Fig. 2. XML Schema Excerpt for DR2

We note from this example that the type system provides a uniform mecha-
nism for representing the structure of datasets both “within” and “outside” files.
In fact, at the level of the type system, no construct distinguishes between what
is inside a file and what is outside. Such a uniform approach allows us to express
workflows and programs that operate both on datasets and file contents. Note
that while XDTM makes it possible to express the structure of a file’s content
in the type system, this level of detail is not required. In particular, it may not
be desirable to describe the structure of binary formats, and we may prefer to
consider such types as opaque.

This use of XML Schema to describe the structure of datasets allows us
to take the conceptual view that there is an XML document that represents a
dataset encoded into a physical representation. Navigating a dataset can thus be
expressed by using the conceptual XML view. We say that the XML document
represents a conceptual view of a dataset because we do not expect every dataset
to be translated into XML: to do so would defeat the purpose of what we are
trying to achieve here, namely, to deal with complex data formats, as currently
used in everyday practice.

Since XML Schema is standardized by the W3C, tools for editing and val-
idating schemas exist; also, query languages such as XPath and XQuery are
specifically conceived to operate on XML documents; moreover, the Document
Object Model [9] offers a standard programmatic interface to such documents.
We use these benefits in the rest of the paper, and we assume that the reader
is familiar with the XPath notation [4]. We now turn to the problem of declar-
ing the physical representation of datasets whose abstract structure has been
specified by XML Schema

5 Mapping to the Physical Representation of Datasets

We next present our approach to specifying the physical representation of datasets.
First, since the structure of a dataset is specified by an XML Schema and since
a given dataset may have different physical representations, it is appropriate to
characterize the physical representation in a document distinct from the schema,



so that the schema can be shared by multiple representations. We expect the
physical representation specification to refer to the Schema (using XML names-
paces and conventions), but we do not want to annotate the schema directly
with physical representation information (as does DFDL [2]), since this would
prevent the schema from being reused for multiple representations of a same
dataset.

Second, we recognize, like DFDL, the need to contextualize physical repre-
sentations, so that we can allow a given type that occurs multiple times in a
dataset to be encoded into different physical representations depending on its
position in the dataset. Whereas annotation can directly be scoped by XML
Schema’s block structure, we now need to provide an alternative mechanism,
since we have just precluded the use of annotations and therefore cannot take
advantage of their natural scoping.

Third, our focus is on representing datasets, that is, aggregation of data,
rather than on specifying the format of arbitrary (binary) data files (for example,
for legacy reasons). Hence, we do not expect a single formalism for representing
physical formats to be able to characterize arbitrary files in a descriptive man-
ner. Instead, we support a mix of declarative and procedural representations;
concretely, we adopt notations from which we can derive methods to read the
physical representation of a dataset into an abstract one, and vice versa to write
the abstract representation into a physical one. We anticipate that a library of
such converters can be made available to the user and that new converters are
permitted to be defined, hereby providing for extensibility. Such a pragmatic
operational view of conversion to and from physical representation allows for
direct reuse of legacy converters for pre-existing formats.

Requirements have identified that it is not desirable to add annotations to
an XML Schema directly. Instead, we need a mechanism by which we can refer
uniquely to an element in a dataset and indicate how it should be converted
(remembering that XML Schema does not impose element names to be unique
in a schema). Such a notation already exists: given that datasets structures are
specified by XML Schema, we can use the XPath notation to identify the path
that leads to a given element in a dataset.

We now introduce an XML notation for the mapping between abstract and
concrete representation. Such a mapping is itself contained in a file so that it
can be made explicit with datasets and published with their XML Schemas.
XDTM (XML Dataset Type and Mapping) is the system that uses the schema
and mapping documents in order to help users manipulate arbitrary datasets as
if they were XML documents.

Figure 3 presents an excerpt of the mappings between abstract and physical
representations for DR2. Each individual mapping identifies an element in DR2
using an XPath expression, and specifies its physical representation by one of the
XML elements directory, file, line, url, and so forth. Specifically, Figure 3
states that the whole DR2 dataset is accessible from a URL; imaging and run

datasets are each represented by a directory; and fpobjc datasets are represented
by files. Other mappings could refer to tar talls or zipped files.



<xdtm:mappings>

      <xdtm:mapping path="/DR2">

            <xdtm:URL namingMethod="Self"  location="http://das.sdss.org/DR2/data"/>

      </xdtm:mapping>

      <xdtm:mapping path="/DR2/imaging">

            <xdtm:directory namingMethod="Self"/>

      </xdtm:mapping>

      <xdtm:mapping path="/DR2/imaging/run">

            <xdtm:directory namingMethod="RepresentRun"/>

      </xdtm:mapping>

      <xdtm:mapping path="//fpObjc">

            <xdtm:file namingMethod="RepresentFpObjc" type="opaque"/>

      </xdtm:mapping>

</xdtm:mappings>

Fig. 3. Excerpt of Mapping to/from Physical Representation

For each kind of physical representation (directory, file, etc.), we use the
attribute namingMethod to specify the name it is expected to have. The value
of this attribute denotes a procedure that produces, from the abstract repre-
sentation, a string that is the physical dataset’s name (and vice versa). For
example, Self returns the name of the element in the abstract representation;
RepresentRun returns the value of the run attribute; RepresentFpObjc is used
to create the fpObjc filename from field, run, and rerun attributes. In the case
of fpObjc files, the mapping also specifies that the file type is “opaque”; that is,
we do not describe the internal physical representation of this dataset.

6 Implementation

The aim of an XDTM implementation is to present, as DOM objects, datasets
encoded in their physical formats so that they can be navigated by an XPath
library like any other DOM object; symmetrically, it allows one to construct
DOM objects that can be serialized to their physical representation. The imple-
mentation of XDTM consists of several components: (i) parsers for mappings
and types, (ii) a library that reads datasets as DOM objects and vice versa,
(iii) an XPath library that allows navigation of such DOM objects.

Our Java implementation uses the Jaxen XPath engine (jaxen.org), which
processes XPath queries over DOM objects. Hence, the aim of our implemen-
tation is to materialize physical datasets as DOM objects so that they can be
navigated by Jaxen, even though they refer to the actual physical representation
of datasets. To this end, our implementation provides a library of classes imple-
menting the standardized DOM interface [9] for all the physical representations
found in DR2.

For each kind of physical representation, we have defined an associated class:
directory in a file system (VDSDirectoryElement), reference to a http server
through a URL (VDSURLElement), file containing an opaque or a fully described
dataset (VDSFileElement), line within a file (VDSLineElement), and conjunction
of multiple representations (VDSGroupElement). In addition, we need to allow
for immediate values such as primitive types, which we abstract by the class
VDSImmediateElement. All these classes implement the DOM interface, which
specifies standard methods to access and create node children, attributes, parent,



and siblings. For example, the dataset imaging is mapped to a directory in Figure
3; in this case, XDTM internally uses the class VDSDirectoryElement, which
implements accessor and creator methods for a directory in a file system.

In more detail, when the dataset imaging is read from the filesystem, it is rep-
resented by an instance of VDSDirectoryElement in the abstract representation.
Whenever the dataset’s children are accessed in the abstract representation, they
are read from the contents of the directory in the filesystem and are made avail-
able as DOM elements themselves, all chained as siblings. The namingMethod

attribute is also used at that point because the procedure it denotes reads the
physical name and returns an element name in the abstract representation and
potentially sets some attributes. Symmetrically, at the abstract level, one can in-
stantiate the class VDSDirectoryElement, create new children for it, and insert
it in other datasets. When saved into the physical representation, it is repre-
sented as a directory that contains its children encoded as files or directories.
The namingMethod attribute value is again used to obtain the name of the di-
rectory from its abstract representation.

7 Related Work

The Data Format Description Language (DFDL) [2] is a descriptive approach by
which one chooses an appropriate data representation for an application and then
describes its format using DFDL. DFDL’s ambitious aim is to describe all legacy
data files, including complex binary formats and compression formats such as zip.
This highlights a crucial difference with our approach: we seek not to describe
binary formats but to express how data is aggregated into datasets. DFDL uses a
subset of XML Schema to describe abstract data models, which are annotated by
information specifying how the data model is represented physically. Specifically,
mappings are declared as restrictions of primitive data types annotated by the
concrete types they must be mapped to; the XML Schema is then decorated
by scoped annotations specifying which mapping applies for the different types.
Since the actual annotations are embedded inside an XML Schema, mappings
and abstract types are not separable in practice. We see DFDL as complementary
to our approach, however, since it can be used to convert XDTM atomic types.

The METS schema [10] is a standard for encoding descriptive, administrative
and structural metadata regarding objects within a digital library. In particular,
it contains a structural map, which outlines the hierarchical structure of digital
library objects and links the elements of that structure to content files and meta-
data that pertains to each element. The METS standard represents a hierarchy
of nested elements (e.g., a book, composed of chapters, composed of subchapters,
themselves composed of text). Every node in the structural map hierarchy may
be connected to content files that represent that node’s portion of the whole
document. As opposed to XDTM, METS does not separate an abstract data
structure from its mapping to physical representation, nor do physical aggrega-
tions such as complex directory structures or tar balls.



XSIL (XSIL: Java/XML for Scientific Data) comprises an XML format for
scientific data objects and a corresponding Java object model, so that XML files
can be read, transformed, and visualized [14]. Binary Format Description (BFD)
[11] extends XSIL with conditionals; it can convert binary files into other binary
formats; to this end, datasets are successively converted into XML by a parser
that uses the BFD description of the input set, translated into another XML
document using XSLT transformations, and finally converted by an “inverse
parser” into another binary format, also specified in BFD.

Hierarchical Data Format 5, HDF5 [5], is a file format (and associated soft-
ware library) for storing large and complex scientific and engineering data. HDF5
relies on a custom type system allowing arbitrary nestings of multidimensional
arrays, compound structures similar to records and primitive data types. HDF5
introduces a virtual file layer that allows applications to specify particular file
storage media such as network, memory, or remote file systems or to specify
special-purpose I/O mechanisms such as parallel I/Os. The virtual file layer
bears some similarity with our mapping, but focuses on run-time access to data
rather than physical encoding. While HDF5 is not capable of describing legacy
datasets that are not encoded as HDF5, some tools allow conversion to and from
XML [8]. Specifically, the XML “Document Type Definition” (DTD) can be used
to describe HDF5 files and their contents.

Microsoft ADO DataSet [1] is a “memory-resident representation of data
that provides a consistent relational programming model regardless of the data
source.” Such DataSets can be read from XML documents or saved into XML
documents; likewise, DataSet schemas can be converted into XML Schemas and
vice versa. The approach bears some similarity with ours because it offers a
uniform way of interacting with (in-memory copies of) datasets, with a spe-
cific focus on relational tables: however, the approach does not support inter-
actions with arbitrary legacy formats. To some extent, the product XMLSpy
(www.xmlspy.com) provides a symmetric facility, by allowing the conversion of
relational data base to XML (and vice versa), but using XML Schema as the
common model for interacting with data stored in different databases. It does
not either provide support for datasets in non-relational formats.

8 Conclusion

We have presented the XML Dataset Typing and Mapping system, a new ap-
proach to characterizing legacy datasets such as those used in scientific appli-
cations. The fundamental idea of XDTM is to separate the description of a
dataset structure from the description of its physical representation. We adopt
the XML Schema type system to characterize a dataset’s structure, and intro-
duce a context-aware mapping of dataset types to physical representation. The
separation of concerns between structure and physical representation allows one
to define workflows and programs that are specified in terms of dataset struc-
tures, but can operate on multiple representations of them. This makes such
computational procedures more adapted to deal with the evolution of data for-



mats, typical of open environments. Beyond the SDSS application described in
this paper, we have experimented with applications in in high energy physics
and medical imaging, by which we demonstrate that the XDTM approach can
help users to operate on concrete datasets used in many disciplines.

We are working on a robust implementation of XDTM capable of operating
over large datasets, with checkpointing and restart capabilities. We are also
designing the second generation of the GriPhyN Virtual Data Language, which
will use XDTM to make workflows independent of the physical format of datasets
they are intended to manipulate.
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