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ABSTRACT

One of the major current challenges in computer science is providing program-
ming models and abstractions that allow efficient and correct parallel programs
to be expressed. The challenge occurs in a number of domains, with different
scales of paralellism required. In the consumer space, eight or ten cores will soon
be common on desktop computers, and the performance of software which can-
not take full advantage of many cores will lag. In the scientific space, scientific
investigations increasingly require computationally intensive simulation and data
crunching on computer clusters.

Coordination languages are one way in which the problem of writing parallel
programs can be made more manageable. A coordination language provides a
specialized way to specify the communication and synchronization between the
different components of a parallel or distributed application. In many cases, the
parallelism in a program is naturally expressed as task parallelism, where inde-
pendent tasks which produce and consume data can run in parallel.

This paper proposes and demonstrates the feasibility of embedding a task-
parallel coordination language, PyDFlow, into the general-purpose scripting lan-
guage Python. PyDFlow currently supports loosely coupled workflows, where
tasks communicate through input and output files, but the language is designed to
be extensible beyond this.

PyDFlow represents parallel computations as graphs of tasks linked by data
dependencies and provides a programming model somewhat akin to functional
languages, where computations are specified by constructing expressions by com-
posing functions. This gives natural syntax and semantics for expressing a parallel
or distributed computation that integrates well with the Python language, and al-

lows execution techniques from the functional language literature to be applied.
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SECTION 1

Introduction

Parallel programming has traditionally been a rather advanced speciality, with the
vast majority of working programmers confined to writing serial code, and par-
allel programming touched on at most briefly in undergraduate computer science
curriculum.

Recent trends in hardware design and applications will require more and more
programs to expose a significant degree of parallelism if they are to make use of
more than a fraction of the capability of new hardware. Desktop processors with
four cores are now common, it seems inevitable that processor with eight or more
cores will be standard in desktop computers.

In the scientific space, improved data collection technologies have resulted in
huge volumes of data requiring analysis, and scientists are increasingly making
use of simulation and automated analysis. In many cases, scientists with only ba-
sic programming skills are in the position where they need to be able to exploit the
parallelism of multi-core machines, computer clusters or grids in order to advance
their research.

The parallel programming abstractions that have traditionally been in the widest
use in production software systems - multi-threading, shared memory and mes-
sage passing - are poorly suited to this new world, where a larger fraction of
programmers will be under pressure to parallelize programs in order to improve
performance. It is difficult to write correct programs with these abstractions: there
are no safeguards against synchronization problems such as race conditions and
deadlocks. It is easy to express synchronization bugs in a program that relies on
shared memory or message passing as its coordination mechanism. Even worse,
it is difficult to find them once they are in a codebase: testing and debugging
techniques that are effective on serial code often are ineffective at finding syn-
chronization bugs, particularly when they are triggered by race conditions. It is
not unusual for latent synchronization bugs to remain undetected until a system
is put under heavy load, or until a seemingly harmless change in the environment
changes the ordering of events.

Programmers who have a deep understanding of synchronization issues, and



who scrupulously engineer parallel programs can navigate these pitfalls, at the
cost of expending a large amount of time and mental effort. But the majority of
working programmers have neither the expertise nor the time to do this.

Working in a distributed environment, with a computation run across many
computers, adds an additional amount of complexity to the problem: aside from
synchronization issues, now programs must have a degree of fault-tolerance built
in, as it is typically problematic if failures of network links or individual hosts
causes an entire program to crash.

The work described in this paper, which is realized in the PyDFlow library, is
motivated by these challenges: it aims to make it significantly easier to express
task parallelism. Programmers without experience with parallel programming
but who understand their application well can often readily identify independent
computations within their serial programs. This task parallelism represents low-
hanging fruit that could easily be exploited by non-specialist programmers given
a clean abstraction for expressing and managing the execution of parallel tasks.
Much previous work has been done on providing coordination languages and ab-
strations for task parallelism. Section 2 surveys the existing literature on the topic.

The main thesis of this paper is that appropriate abstractions for task paral-
lelism embedded in a flexible general-purpose language like Python can express
a significant amount of task parallelism without being onerous to learn or to inte-
grate with existing code. PyDFlow has been designed with a strong view toward
supporting the integration of disparate systems. There are a number of different
usage scenarios that PyDFlow is designed to accommodate. A common scenario
is where an number of existing serial subprocedures or executables must be com-
posed to run in parallel. Another is where an existing function is to be parallelized
without any alteration to the external interface. A further scenario is where we
want to specify a new kind of parallel task that perhaps runs on a particular device
such as a GPU or uses a particular grid or cloud software stack to support execu-
tion of remote tasks. PyDFlow aims to be flexible enough so as not to require any
radical changes to the library to support unanticipated uses.

Using a dynamically typed “scripting” language like Python is natural, as these

languages and their software ecosystems are already well suited for quick compo-



sition and integration of software components. PyDFlow aims to leverage this ex-
isting strength, integrating multiple components to run in parallel. Adding support
for task parallelism to a scripting language is likely to make it easy to incremen-
tally parallelize a program, provided that the new additions work with existing
language constructs.

Furthermore, PyDFlow is designed to allow coordination of applications com-
prised of different types of parallel task. The architecture of the library separates
the logic for managing inter-task dependencies and execution from the logic for
actually executing the task. PyDFlow supports tasks that are simply function in-
vocations on a local machine, but the library design can coordinate execution of
tasks on alternative devices such as GPUs, or on remote machines, with fault tol-
erance and dependency management provided by the PyDFlow library. Adding a
new type of task to PyDFlow does not require any changes to the core library: it
merely requires a small set of functions to be written for the new task type that

allow tasks to be started and data to be managed.

10



SECTION 2

Coordinating Task-Parallel Computations

2.1 Coordination Languages

The concept of a coordination language was introduced to describe a methodology
for developing distributed systems that attempts to separate the concerns of com-
putation and coordination. The term coordination language was first introduced
to describe the Linda tuple space system [37]. The Linda model provides a shared
space containing tuples of data, along with a small set of primitive operations to
read, write and query this tuple space. The Linda model could be implemented
as libraries for a range of languages, permitting interoperation between different
systems.

At the time there were many existing languages, such as C' or C' + + that were
mainly suited to efficiently expressing computations running in a single shared
memory space. These languages, however, did not provide primitives that were
well-suited to expressing the coordination of distributed softare components. By
providing a coordination language - a standard set of primitives for coordination
between distributed processes, this weakness could be addressed. A system like
Linda can realized as a library rather than as a programming language proper,
meaning the coordination language can be orthogonal to the computation lan-
guage, as it is possible for programs written using different coordination languages
to use Linda libraries for coordination.

Coordination languages are an appealing way to reduce the difficulty of de-
veloping correct distributed/parallel systems. They have a number of strengths.
One advantage comes from using a well-defined communication paradigm. Once
a developer understands the coordination language, then they can more easily un-
derstand the coordination logic of a new application or software module. If a lower
level communication mechanism such as TCP sockets is being used directly, then
the number of different ways that communication can be implemented is much
larger. Another advantage comes if the communication primitives provided by
the coordination language can be easily reasoned about, for example if they are

compositional [34] or deterministic [14].
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2.2 Task Parallelism

Parallelism can exist in a program in a large number of forms and granularities.

The granularity of parallelism exploited can vary widely. At the lowest level, a
modern computer processor will exploit instruction-level parallelism (ILP) [39] to
overlap execution of different machine instructions such as arithmetic operations
and memory accesses. The mechanisms involved in exploiting the different levels
of parallelism are quite different. Typically it makes little sense for a program-
mer to try and exploit instruction-level parallelism , as it is entirely dependent on
the processor architecture and requires an intimate understanding of the working
of the particular processor. Instruction-level parallelism is usually captured by a
combination of the processor, which can dynamically identify the dependencies
between instructions, and the compiler, which can compile code in such a way as
to expose maximum instruction-level parallelism through techniques such as loop
unrolling. While impressive performance gains have been had by automatically
exploiting more and more instruction-level parallelism, the move to multi-core
chips and the need of many applications to scale up to multiple computers dictate
that gains in performance will have to come from exploiting coarser grained par-
allelism [39], which cannot be captured easily by hardware techniques and which
is extremely challenging to discover using program analysis techniques.

Two types of coarse-grained parallelism are data parallelism and task paral-
lelism. In data parallelism, parallelism is obtained by applying the same opera-
tion to each data item in a set in parallel. Different granularities of data paral-
lelism can exist. Vector machines, for example, can apply individual arithmetic
operations in parallel, but other data-parallel systems will apply more complex
and computationally intensive functions to the data items. Data parallel pro-
gramming models typically support parallelism for regular data structures such
as multi-dimensional arrays, but can be extended to support more complex nested
data structures [9][12]. In either case the constraint remains that parallelism in the
program must conform closely to the data structures used in the program.

Task-level parallelism, in contrast, does not impose the same kind of regularity
as data-parallelism: heterogenous parallel tasks can be created and composed in

irregular ways with communication and synchronization under programmer con-
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trol. Different granularities of task-level parallelism also exist, from long-running
batch jobs [50] to individual functions in a low level language like C [10].

This can make it significantly easier to express the parallelism available in
many applications, which in many cases is naturally conceived of as heteroge-
nous tasks with control dependencies. It can also allow improved performance
by dividing work between tasks in ways that improve data locality or by allowing

dynamic scheduling based on data availability [35].

2.3 Task Dependencies

There are various programming models that are used to express task parallelism.

The most basic method is effectively just to provide low-level primitives for
creating new threads and for synchronizing between them. Communication be-
tween tasks can simply be through shared memory, relying on the programmer to
implement correct and safe communication. Standard threading libraries provide
the basic primitives such as thread creation and locks to allow this, and additional
means of communication such as queues or concurrent data structures can aug-
ment this.

Another option is a synchronous fork/join model, where a program consists of
sequential sections, which break into parallel sections by forking parallel tasks, for
example for each iteration of a for loop. The parallel sections have a well-defined
end point where all of the forked tasks synchronize and sequential execution re-
sumes. This model is supported by systems in wide use such as OpenMP [19].
This model does limit the kinds of parallelism that can easily be expressed be-
cause of its inherently synchronous nature: in many cases it is difficult to exploit
heterogenous parallelism with this model.

A more general model then is the task graph model, where control-flow de-
pendencies between tasks are made explicit - a first class concept within the lan-
guage. In this task graph model, the program is modelled as a directed acyclic
graph (DAG) of tasks, with the control-flow dependencies between then as edges
in the graph. A task can only be run once all of the tasks it depends on (i.e. that

it has in-edges from) have completed. This graph is necessarily acyclic, as oth-

13



erwise tasks would be dependent on themselves'. The task graph model is more
flexible than the the fork/join model, and less error-prone than code that directly
uses threads, locks and shared memory for coordination.

A task graph can also be implied if tasks synchronize on shared variables
or “futures” (§3.4). In Compositional C++, for example, tasks synchronize on
shared write-once variables, effectively inducing a data-flow graph based on these
dependencies that then determines the order in which tasks can be run.

In some cases the task dependencies in a program will exactly match the data
dependenciee, in which case the task graph and the data-flow graph of the program
are the same. Structuring a program in this way makes the parallelism quite easy
to identify and reason about. If in addition we avoid side-effects and manipulation
of shared state, the program can have desirable properties such as compositionality
and determinism. In task-parallel languages with side-effects, such as Cilk [10]
and Compositional C++ [13] do not impose any particular restrictions on what the
parallel tasks may do and indeed it is possible for the tasks to communicate in
arbritrary ways by modifying global state. However, by convention, programmers
would avoid using shared state as much as possible.

Some task-parallel programming systems can provide stronger guarantees about
tasks not interfering with each other. Safety can be enforced at the language level
if the language is non-imperative (§3) or at the systems level if the task is executed
on a separate machine or in a separate memory space, such as in the workflow sys-

tems described in the next section.

2.4 Grid Workflow Systems

A particular type of coordination language is a workflow system, which are often
for scientific applications and in the context of grid computing [26][80]. These
systems are designed to allow the composition of varied data sources, and tasks
in order to generate scientific data and perform analyses. These tasks could ex-

ecutable programs run on remote resources, web services, data transfers, or any

I'There are closely related forms of graphs which can be cyclic, for example if recursion or
iteration is represented in the graph, but we restrict the discussion to the case where every vertex
in the task graph is a task that executes exactly once
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similar task. Workflow systems are typically designed to support large-scale com-
putations, managing data dependencies between components of the workflow and
ensuring that the final result is produced even in an unpredictable and sometimes
unreliable distributed environment.

In order to provide a uniform abstraction over the components of a system,
workflows typically view a task as a “black box” with a number of inputs and
outputs of potentially different types. These inputs and output could be a mix of
files, database entries and invocation parameters. A typical workflow has have a
number of data sources, a set of desired output data items, and intermediate steps
that represent the transformations required to derive the outputs from the inputs.
In essence, these workflow systems are similar to a build tool like make [30] and
indeed there are workflow systems such GridAnt [2] and gxp-make[66] that are
extensions of the build tools ant and make respectively.

The dependencies between tasks are often conceptualized as a task graph of
data dependencies. In some workflow systems, for example in DAGman [69] or
Pegasus [25], the workflow is expressed at the outset simply as a explicit graph
in a special XML file format. Some other workflow systems, such as Swift [81]
or GridAnt [2] add iteration constructs, which means that the topology of the data
DAG depends on values calculated during the execution of the workflow.

The representation of a computation as a task graph, aside from providing a
convenient abstraction for the workflow, permits various optimizations and fea-
tures to be implemented. Many workflow engines use the DAG representation in
order to schedule and plan task execution, procuring computation resources and
moving required data in advance. This requires that the system be able to infer
inter-task dependencies ahead of time, which is supported directly if an explicit
DAG representation is used, and can also be supported if dependencies can be

discovered at runtime, or be statically inferred from the code.

2.5 Skeletons

Skeletons were proposed as a solution to the challenge of programming paral-
lel systems, where the complexity of implementing parallel programs is reduced

through the used of fixed patterns of parallel coordination [16]. Common ex-

15



amples of skeletons include “master-worker”, where a large number of tasks are
run in parallel, with load-balancing between workers, “reduction”, where a large
number of values are reduced down to a single value using a reduction function
These patterns are common in popular parallel programming tools. MapReduce,
for example, is a popular programming model for clusters [24] that uses a single
communication pattern as a skeleton.

Many common problems can be solved using a relatively small number of
communication patterns, so the burden of reimplementing them from scratch can
be removed from the programmer. Typically also this approach permits efficient
and optimized implementations with well-understood performance properties to
be used [21]. Skeletons have been proposed as a coordination language paired
with a sequential computation language such as FORTRAN [22]. A range of dif-
ferent skeleton based coordination languages have been proposed, each providing
different sets of primitives and working in different contexts [20, 29, 47, 52, 75].

Skeletons can be viewed as special cases of the more general data flow graph
approach, as most if not all skeletons are simply special cases of data flow graphs.
The advantage of standardising the pattern is that it can permit specific optimi-
sations for those particular graph topologies, or can simply make implementating
the system easier. For example, some supercomputing systems provide hardware-
level support for MPI reduction operations [1], and the fixed structure of a MapRe-
duce job makes it easier to reason about and improve the performance of tech-

niques such as replication [24].

2.6 Recent Trends

There are a number of trends occuring in the software that can inform design of
coordination languages. For many programmers, factors such as speed of devel-
opment, availability of libraries, fault tolerance and ease of scalability can trump
factors like type safety and efficiency, at least when it comes to building real sys-
tems using existing components. As a result, it is definitely arguable that systems
intended for use by a wide range of programmers should prioritize these aspects.
In particular, we look at the popularity of massively parallel programming

models for cluster hardware like MapReduce or Dryad and also the success of
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of dynamic programming languages for a wide variety of applications, such as
web development is also a relevant trend, as anecdotally many programmers ex-
perience greatly improved productivity using dynamic languages and frameworks
written in these languages. Looking at these solutions provides some insight into

the needs and problems faced by users of distributed systems.

2.6.1 The rise of cloud computing

There are many examples of parallel programs that don’t require intricate coor-
dination to occur between processes running on separate machines. Rather, the
coordination in the application can be expressed as files or data streams being
produced and consumed by tasks.

MapReduce [24] is an important example, where a fixed pattern of commu-
nication and a system design that emphasizes robustness over efficiency and low
latencies has proven sufficient to support a wide range of applications. The ca-
pabilities that MapReduce implementations such as Hadoop [78] provide have
turned out to be rather useful to a large range of companies, who use it for the
types of information-retrieval and data-processing applications it was originally
intended, as well as more intricate tasks such as machine-learning algorithms [67]
and scientific simulations [63].

These systems tend to eschew low latencies and support for unconstrained
communication between cluster elements in favour of a more restricted model of
computation. The success serves to illustrate that, for many problems, what is
needed is a clear way to express parallelism, a model that scales well and a sys-
tem that is fault-tolerant. Improving performance is of course always beneficial,
and supporting more intricate coordination would broaden the range of potential
applications, but these are not necessarily key to the usefulness of cloud comput-
ing systems. Hadoop, the most popular implementation of MapReduce, is a good
example: it has attracted a large base of users despite having quite high perfor-
mance overheads and making it difficult to express such fundamental operations
as joins in an efficient way [65].

Furthermore, Pig Latin, a data-processing language implemented on top of

Hadoop, allows specification of data-processing pipelines at a higher level, at the
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high cost of a 50% increase in runtime, yet was still widely adopted within Yahoo,
a major search engine [36]. This demonstrates that expressivity and reliability is
more important than raw performance for many parallel applications.

The MapReduce model can be generalized to support more general commu-
nication patterns. There are a number of different systems that also provide a dis-
tributed file-system and the ability to run massively parallel jobs. Iterative MapRe-
duce is a conservative extension to MapReduce that allows multiple iterations of
the MapReduce pattern to be overlapped [27]. Dryad is a further generalization
supports a range of different operators that can be used to construct more sophis-
ticated communication patterns [41]. CIEL similarly supports arbitrary patterns

of communication [57].

2.6.2 The Rise of Dynamic Languages

Over the last decades, dynamic programming languages such as Python [64],
PHP[70], Perl [77], Ruby [31], TCL[60], Groovy [46] have arisen from various
sources. These languages are characterized as dynamic, as opposed to static, be-
cause many things, particularly types and variable bindings, are implemented at
runtime (ie. dynamically) rather than at compile time. This has various benefits: it
is relatively straightforward to implement interpreters for these languages, and im-
plementation of dynamic behaviors such as introspection, which are challenging
in a static language, become relatively straightforward.

Many of these languages have managed to attract a strong community of users
and developers and a large number of tools and libraries available. These lan-
guages are well-suited to rapid prototyping due to the range of libraries and the
multiple programming paradigms embodied in these languages, and the concise-
ness of the syntax.

A classification of languages into scripting and systems languages has been
proposed by Ousterhout [59], with the above-mentioned dynamic languages clas-
sified as scripting languages. Ousterhout argues that two distinct categories of
languages have become used widely in practice by programmers. Systems lan-
guages such as C or Java provide low level access to the machine and can allow

highly efficient code using complex data structures to be written, but tend to be
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more verbose, inflexible and require more code to be written to achieve a task
compared with scripting languages. Scripting languages are characterized as con-
cise and flexible but due to their dynamic features, they typically are challenging
or impossible to implement efficiently. Ousterhout argues that scripting languages
allow much higher programmer productivity, and can be used to build software
far quicker without sacrificing much performance by building high performance
modules using systems languages, but then specifying the high level logic of an
application by use scripting languages to glue together the modules of a system.
It is entirely possible that the dichotomy proposed by Ousterhout is a false one
that can be bridged: it is not obvious that the desirable qualities for expressing
“scripts” can only be provided by low-performance dynamic languages.
However, regardless of whether the dichotomy is fundamental it appears that
the split between scripting languages and systems languages is entrenched, at
least with the the programming languages currently in widespread use amongst
working software developers. For example, Ruby on Rails [6] and Django for
Python [33] are frameworks designed to enable rapid development of websites
with content generated and stored in a backing database. These frameworks use
features of dynamic languages and are widely popular amongst web develop-
ers, because the frameworks are designed so that common behavior for database-
driven websites , such as filling a html template with values or selecting a number
of records from a database can be expressed extremely concisely and in a way that
is straightforward to change. The performance penalty for using these languages
is not terrible because most of the heavy lifting is performed by web servers and

databases written in more performant systems programming languages.

2.7 Scripting and Coordination

It is natural to ask, given the similarities between the roles played by “coordi-
nation” language and “scripting” languages, whether the concepts are closely re-
lated. After all, scripting languages are often used to orchestrate components
written in other languages.

The virtues attributed to scripting languages such as conciseness and speed of

development would seem also be be virtues in a coordination language, particu-
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larly in scenarios where we want to be able to easily reconfigure software compo-
nents that execute in a parallel fashion. One of the greatest challenges in devel-
oping parallel software is managing the complexity of communication and state.
If the coordination logic of a parallel application could be condensed to a single
readable script, then developing, debugging and understanding the communica-
tion logic would be greatly simplified, especially if the coordination language’s
primitives are easy to reason about.

Swift [79, 81] and Skywriting[56, 57] are two scripting languages designed
expressly for the purpose of coordinating distributed applications.

Both languages are designed to coordinate computations on a cluster of ma-
chines. Swift in particular is quite flexible about the environments it supports:
through the coasters mechanism it can run on high-performance supercomputers,
on networks of workstations and on wide-area grids. In both systems, the co-
ordinating scripting language runs on a single machine, but spawns off indepen-
dent tasks running across many machines on the cluster. Communication between
tasks in both instances occurs through files, which means that data can be passed
between tasks without having to pass through the machine running the scripting
language.

Both languages rely on a sharp division between the “coordination space” and
the “data space” of the application. The scripting language runs in the coordina-
tion space, and all of the variables and data in the coordination space reside in
the same shared memory space. All coordination decisions, such as which tasks
to run, how tasks interact and when to terminate are made within the coordina-
tion space. The data space is the space in which tasks are run and the bulk data
processed by the application must reside. Data can be moved between the two
spaces, but typically moving large amounts of data from the data space to the
control space would be avoided for performance reasons.

Centralizing control of the parallel computation within the coordination space
makes it straightforward to reason about the behavior of the system, because the
behavior is analagous to serials programs and does not require reasoning about the
interactions of many distributed processes. Keeping large datasets and intensive

computation outside of the coordination space means that the performance of the
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application is not too dependent on the performance of the scripting language or
bottlenecked by the limited resources that exist in the coordination space.

Both of these languages, however, assume a particular relationship between
the script and the code being orchestrated: they presume that the script is respon-
sible for controlling the parallel execution from the top-down, with the top-level
coordination logic contained in a master script file. In neither case are there fa-
cilities provided to integrate the scripting language with other code in any other
way. In contrast, one of the strengths of scripting languages is that they are more
flexible than this: for example, TCL is designed so that the interpreter can be
embedded within an application, and so that it can “glue” together components
in arbritrary ways. In many cases it would be desirable to have the flexibility to
add parallelism into existing software from the bottom up by replacing sequential
modules with parallel versions. They also are rather special-purpose languages,
without the more general purpose programming constructs and wide range of li-
braries that more mature scripting languages provide, and which is one of the main

contributors to the rapid code development that is possible with them.

2.8 Domain Specific Languages

Domain-specific languages (DSLs) are special purpose languages that are con-
structed for the purpose of expressing programs within a specific domain. They
trade off generality in order to allow a more concise, expressive or exotic syntax
that best suits the problem being solved [53]. Typically they are used instead of
more traditional libraries when the constructs that best allow the program to be
expressed do not map naturally to the constructs in a general purpose program-
ming language. DSLs can either be entirely new languages, with a customized
syntax, parser and compiler or intepreter, or they can be embedded DSLs, where
the program in the DSL is specified with the constructs of the host language (for
example as an abstract syntax tree) and then interpreted within the host language.
withing

Because of the way Swift and Skywriting are specifically targeted to support-
ing the top down coordination of components of particular types, they are perhaps

better thought of as domain-specific languages for coordinating tasks rather than

21



fully-fledged scripting languages. It is possible to achieve similar goals with a
domain specific language using a programming model distinctly different from a
scripting language or a functional language.

One effort that aims to produce task-parallel domain specific languages (DSLs)
is Delite [11]. Delite is different from Swift and Skywriting in that it is not de-
signed to run in a distributed setting, rather focusing on managing multiple, poten-
tially heterogenous compute resources on a single machine. Delite, rather than be-
ing a domain-specific language on its own, provides tools to construct customized
domain-specific languages.

Delite is implemented in Scala, and provides abstractions that allow program-
mers to implement custom data types and operations on those data types that can
be managed by the Delite runtime. Delite also allows construction of custom
control-flow constructs. Delite operators when applied to Delite objects build a
deferred task graph and return a future for the data that will be generated. Delite
takes advantage of the pure functional subset of Scala, to allow static analysis of
the DSL expressions

Another domain-specific language, Bloom, takes more inspiration from logic
languages such as Datalog, where every data item is a tuple representing a logical
predicate and program logic is expressed by inference rules from one predicate to
another. Data is partitioned in a distributed environment by key, and communica-
tion is induced when logical inferences are made that produce a tuple that resides
in a different machine’s partition of the tuple-space. The Bloom language itself
is entirely data-parallel rather than task parallel, but it can be used to facilitate

task-parallel programming because arbritary code can be triggered by events.

2.9 Formal Models of Coordination

Orc [45] is another coordination language designed specifically for writing pro-
grams that orchestrate distributed components. Orc presents an interesting con-
trast to systems like Swift and Skywriting because it attempts to build a coordina-
tion language on a minimal set of abstractions.

Orc models all local and remote functions with a uniform abstraction, the

“site”. A site is in many ways similar to a asynchronous remote function: a call
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to a site can happen concurrently with other site calls, and can also be cancelled.
Site calls which never terminate or halt can be used to model persistent processes.

Coordination in Orc is based on a minimal concurrency calculus, which al-
lows sophisticated coordination patterns that utilize a distributed set of sites to be
specified with a small set of combinators. Only four combinators: the parallel
combinator, the sequential combinator, the pruning combinator and the otherwise
combinator are sufficient to express a wide range of applications. A small func-
tional programming language called Cor is also a part of Orc for convenience, but
the concurrency calculus is in fact sufficiently expressive that Cor is able to be

compiled to Orc.
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SECTION 3

Functional Languages as Coordination Languages

The idea of using non-imperative languages to specify parallel computations has
been a subject of research over several decades. The primary attraction is that
these language have large “pure” subsets, to which powerful but relatively straight-
forward parallelization techniques can be applied without affecting the semantics
of the language. In this section we discuss functional programming languages, as
they are most relevant to the rest of the paper, but other forms of non-imperative
languages, such as logic programming languages also have this property. There
are a number of parallel logic programming languages [23], and at least one,
Strand [34], has been proposed as a coordination language.

In functional programming languages such as Scheme, ML or Haskell, large
subsets of the programming language are purely applicative: that is, formally they
can be viewed as a single expression in the language, rather than as a sequence of
statements to be executed in a particular order. These functional languages also
tend to favour a programming style where evaluation of expressions has no side
effects, such as input, output or modifications of program variables. Expressions
that are both applicative and side effect free are commonly referred to as pure.
It is feasible to apply parallel evaluation strategies to the pure subsets of these
languages languages without any modification to semantics, because each subex-
pression will reduce to the same value regardless of whether it is evaluated before,

after or in parallel with another subexpression.

3.1 Strict and Non-Strict Evaluation Strategies in Functional

Languages

Given a program in a pure language, there are various strategies that can be used
to evaluate the expression and obtain the final value.

Strategies vary in the order in which subexpressions are evaluated. A distinc-
tion is commonly made between strict and and non-strict (or lazy) strategies. Fig-
ure 3.1 demonstrates the radically different order in which expressions are evalu-

ated. Note that in the lazy version, x is never evaluated.
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let x
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sqrt(123) # x evaluated 1|let x = sqrt(123) # thunk created for
sqrt(456) # y evaluated 2 y = sqrt(456) # thunk created for
sqrt (4) # z evaluated 3 z = sqrt(4) # thunk created for
4 |in
= if z == 2:# z compared 5 let a = if z == 2 # z evaluated and
then y # a set to value of sqrt(456) 6 then y # a and y same thunk
else x 7 else x
8 in
a now contains a value 9 # aly is evaluated later on demand
rest of expression 10 rest of expression

X

y
z

compared

(a) Strict evaluation (b) Lazy evaluation

Figure 3.1: A comparison of the same code with both strict and lazy semantics.
The whole expression shown in both cases is an example of a pure expression.

If an evaluation strategy is strict then variables, including local variables and

function arguments can only contain final values. This means that when an expres-

sion is assigned to a variable, for example by the statement: x = fibonacci (20)

then first the expression fibonacci (20) - 1 must be evaluated (by calling
the fibonacci function and then subtracting one) and only then is the resulting
value assigned to the variable x.

In contrast, in a lazy language, a variable can be bound to a unevaluated ex-
pression, so the above statement would immediately create an in-memory repre-
sentation of the expression fibonacci (20) - 1 and bind it to the variable
x without evaluating it. The expression is then only evaluated if the value of
the variable is needed. These suspended expressions are commonly referred to
as thunks. Thunks can be manipulated in many ways, such as being passed as

function arguments or stored in data structures without triggering evaluation.

3.2 Task Graphs and Thunks

Lazy functional languages are closely related to the task-graph model of parallel
computation. While the programming model is typically not described in terms of
graphs of tasks, the in-memory representation of an unevaluated expression forms
a directed graph, which is typically acyclic'.

This is because thunks will often contain references to other thunks: one thunk

I'some lazy functional languages such as Haskell in fact can have cyclic data structures, but this
feature is not particularly relevant to this discussion
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may be a suspended application of an operation that takes a number of different
thunks as arguments [44]. The recursive nature of thunks means that a recursive
structure of thunks bound to a variable actually forms a graph. This is very similar
to a task graph, in which the vertices of the graph represent activities that may or
may not have executed: they represent suspended computations in the same way
that thunks do.

One difference between the two models is granularity: in the task graph ab-
stract, tasks are effectively opaque and can be of a large granularity. In contrast,
thunks can represent even the application of a single primitive operation, such as
an arithmetic operation or a conditional statement, or they can also represent a
function invocation that will expand to a much more complex expression.

Functional language programmers do not typically think of expressions as a
graph, but current implementation techniques for lazy functional languages such
as Haskell have their roots in the graph reduction model of computation [44],
where a program is represented as a graph and computation proceeds through
incremental reduction steps until the graph is reduced to some canonical form,
ie. a value. Examples of reduction steps are: evaluation of a primitive operator,
expansion of a function application, replacement of a variable with its value.

To illustrate the commonalities between the two models, Figure 3.2 shows a
simple astronomical imaging workflow is expressed as both a task graph and in
Haskell syntax. The similarity is not total: if Figure 3.2 was a real Haskell pro-
gram with the nodes representing Haskell functions, each node would be further
expanded into primitive operators, rather than treated as an opaque task.

Given the similarity in the functional and task graph models of computation,
semantics and the well-developed techiniques for expressing and executing func-
tional programs, there are ideas that can be borrowed from the functional pro-

gramming world to apply to build task-parallel systems in other languages.

3.3 Parallel Evaluation

Typically programming languages have been designed with sequential evaluation
semantics in mind. This has some advantages: sequential semantics are typically

easier to understand and reason about, and it avoids the non-determinism that
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montage_image

extractTileInfo

mArchiveGet
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— simpleColorMontage is a function with 6 input arguments
simpleColorMontage loc width height rband gband bband =
mColorJPEG rimg gimg bimg
— the where clause contains local definitions for simpleColorMontage
where [rimg, gimg, bimg] = map bandlmg [rband, gband, bband]

— bandlmg creates a greyscale image for this band of light
bandImg band = mAdd projected
where raw = fetchTiles band
projected = map mProjectPP raw

{— fetchTiles retrieves image tiles for band and part of sky
from an online archive —}
fetchTiles band = map mArchiveGet tileInfo
where tilesFile = mArchivelnfo loc width height band
— parse the tile list file into a Haskell list
tileInfo = extractTileInfo tilesFile

Figure 3.2: A Montage astronomical imaging workflow expressed in Haskell and
as a task graph. The data dependency graph is obtained by expanding the Haskell
data-dependency graph, treating the functions used (mArchivelnfo, mAdd, etc) as
atomic operations.
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could easily be introduced by parallel evaluation. For example, if different unre-
coverable errors are caused by the evaluation of two different subexpressions, then
a sequential order in which the subexpressions are to be evaluated ensures that the
same error is raised whenever the program is run. Even if a language is defined in
terms of its sequential behavior, however, it is possible to develop correct parallel
evaluation strategies that preserve this.

In the rest of the section I discuss a simple parallel evaluation strategy, the
“eager beaver” [7] strategy, and show how the strategy must be modified to work
practically with strict and lazy languages. This strategy simply involves recur-
sively starting parallel evaluation of pure subexpressions whenever they are en-
countered, creating parallel work whenever an opportunity for parallel evaluation

1s encountered.

3.3.1 The Eager Beaver Strategy for Strict Languages

If the language has entirely strict semantics, where function arguments are evalu-
ated before the body of a function, then subexpressions can correctly be evaluated
regardless of whether the final value is needed, except for special cases such as
expressions that are the branches of a conditional expression.

However, strict semantics impose an ordering on the evaluation of expressions
that is stricter than data dependencies dictate.

For example, the evaluation of any part of the body of a function cannot pro-
ceed until the function arguments have been fully evaluated, so opportunities for
parallelism that would arise from evaluating arguments and the function body are
lost. Inter-procedural optimization techniques can in some cases identify these
opportunities. More typically, however, this problem can be solved by introduc-
ing a explicit future construct into the programming language, which is similar to
a thunk in that it represents a value that is yet to be computed, but distinct in that
the evaluation will occur in parallel in a different thread. Multilisp, for example,
introduces an explicit future annotation that can be applied to a function invoca-
tion, which alters the function to return a handle that can be used to access the
future value of the expression being computed [38]. Manticore, a parallel version

of Standard ML, offers a similar pval construct [32]. Futures and related con-
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structs have been used in many different languages, including both imperative and

functional languages. We discuss futures further in Section 3.4.

3.3.2 The Eager Beaver Strategy for Lazy Languages

If the language is lazy then eager beaver evaluation is more problematic, as it can
lead to expressions being unnecessarily evaluated, and more importantly, can lead
to incorrect behavior.

The eager beaver strategy can lead to results differing from the sequential se-
mantics because of a particular property of lazy languages. Under lazy semantics,
the fact that an expression is valid and evaluates to a value does not guarantee
that all subexpressions are also valid. This is because evaluation of the enclos-
ing expression might not actually demand the value of the bad subexpression. If
an eager evaluation strategy starts evaluation of the bad subexpression before it
is needed, then sophisticated runtime strategies are required to avoid difficulties:
any errors must be quarantined until they would have occured under sequential
semantics, if they occurred at all.

Furthermore, the eager beaver evaluation strategy is problematic from a per-
formance point of view, as a potentially unbounded amount of time and space can
be expended on unnecessary evaluation of unneeded subexpressions.

We can modify the evaluation strategy to be more conservative, and correct,
so that it only creates parallel work when it can be inferred that the result will
be needed through static strictness analysis [44]. Unfortunately this is in gen-
eral a particularly difficult problem in languages like Haskell, where laziness is
pervasive down to the level of primitive operators such as list construction. As
a result, parallel Haskell implementations [73] tends to rely on additions to the
language that introduce an element of strictness, such as parallel annotations for

expressions [72], or strict data structures[12].

3.3.3 Similarities between Lazy and Strict Strategies

These additions to strict and lazy functional languages above result in somewhat

of a convergence in semantics: starting from a lazy language ended up resulting
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in a language that was lazy with optional strictness, while starting with a strict

language lead to a language that was strict with optional laziness.

3.3.4 Reducing Overhead

Another serious difficulty with parallel evaluation is that, in some cases, too much
rather than too little parallelism will be identified. The number of parallel tasks
generated can be vast for many applications, with the overhead required for man-
aging them overwhelming any benefits from parallelism.

If subexpressions are to be calculated on different CPUs, then there are a num-
ber of steps that must be taken for each chunk of work to be shared, which can add
up to at least several CPU clock cycles. A description of the work must be cre-
ated, and stored in shared memory. This typically involves some sort of locking
and bookkeeping. Then if the expression is to be evaluated on a different CPU,
all of the required data must be moved from one CPU cache to another. Clearly
if the subexpression was small: for example a simple arithmetic expression, then
the costs of parallelism exceed any gains.

Techniques have been proposed and implemented that reduce this overhead.
One approach is to avoiding splitting parallel work into tasks of too small a gran-
ularity. Cilk, a task-parallel version of C, tackles the problem by using a variety
of tricks to minimise the overhead of parallel task creation and scheduling [10].

A more radical approach, was to tackle the problem at the hardware level with
data flow computer architectures, where the burden of managing fine-grained data
dependencies was handled by specialized hardware [76]. Despite a large amount
of research on the topic, dataflow machines did not become practical alternatives
to conventional computer architectures.

The problem of too fine grained tasks is typically solved in practice, for exam-
ple, in parallel implementations of Haskell [73], by requiring the programmer to
explicitly annotate which expressions should be evaluated in parallel. The laziness
and strictness modifiers described above partially achieve this, as the programmer
provides some information to guide what should be evaluated in parallel. Other
language constructs such as parallel tuples [32] provide another way to annotate

which parts of the program are worth evaluating in parallel.
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3.4 Futures and Write-Once Variables

Futures [7] (also called promises[49], or a variety of other less common names)
are a commonly utilized construct used when either implementing non-strictness
in a strict language, or when coordinating asynchronous parallel computations. A
future is in essence a proxy for a value that may or may not yet be computed.

There are a large number of different variations on futures. At a minimum
a future has two states and supports two operations. The states are filled, when
the value has been computed and is directly accessible through the future, and
unfilled, when the value is in the process of being computed. The operations are
creation, where the future is created and associated with a computation that will
eventually yield a value, and resolution, where the current thread of computation
synchronizes on the future and is suspended until the result is available.

Futures can be either implicit or explicit. Implicit futures, for example those in
Multilisp [38], require some support at the language level and can be manipulated
in the same way as any other variable: they are transparent proxies. Creation of
the future can occur by, for example, adding a future keyword to a function
call. Resolution of the future occurs when the value of the variable is needed.
Explicit futures do not require integration at the language level: they are realized
as a distinct data type that supports the required operations explicitly.

The basic two-state future is a eager future: as soon as the future is created,
evaluation can commence. We can add an additional unforced to create a lazy
future. The evaluation of a lazy future only starts when the value is forced, either
synchronously when the future is resolved, or asynchronously if an additional
operation to start asynchronous resolution of the future is supplied. Lazy futures
give some additional control to the programmer, who can now decide when the
computation should commence.

Write-once variables are a related construct that can be used to provide similar
behavior in an imperative context. For example, Compositional C++ [13], a fully
imperative language, provides a type of write-once variable called a sync variable.
Id, a functional language with some imperative features, provides a version called
the I-var [58]. Write-once variables differ in that the variable can be declared and

have storage allocated prior to it being written.
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parallel

with futures

1|// using like a future
2 |int x
3 |x = do_calculation() // start in
4
5 |// cannot do this with a future
6 |int y
// start calculation in parallel ; i (Cogdia§cone()
int x = do_calculation () 9 y =
if (cond) { 10 felse {
. . . . 11 y = calctwo ()
/! semantically invalid to assign to a 12}
future 13
_ . . .
y X another_calculation () // invalid! 14|z = f(x, y) // synchronize on x and y
15
int y = x + 2 // synchronize on x 16 | if (otherco.nd) { . .
int z = f(x ) /1 synchronize on x and 17 // runtime error if this branch taken
- » Y 8y y 18 y = calcthree ()
// must define list at declaration time ;g 1
int A[] = map(g, [1..100]) 21 [ int A[100]
22 |A[0] =0
(a) Futures 23 |for i =1 to 99 {
24 // write in strange order
25 // difficult to express this
26 A[(7%1)%100] = calc(i, A[(7*(i—1))%100]);
27 |}

(b) Write-once variables

Figure 3.3: A comparison of futures and write-once variables in pseudocode.

We illustrate the difference between these two constructs in Figure 3.3. Write-
once variables can be used in the same way as futures by declaring them and then
immediately assigning to them, but there are situations in an imperative language
where it is useful to create a write-once variable and assign to it later. Like a future,
attempts to read a write-once variable will block the reading thread until the data is
available. This concept is generalized to arrays, for example I-structures in Id [4],
by enforcing that each array element can only be written once This enables some
imperative algorithms that rely on indexing into an array.

A disadvantage of write-once variables is that it becomes possible to express
invalid programs with them: in an imperative program, it is possible to write twice
to the variable, causing an error. A future differs in that, at creation time, it is al-
ready bound to contain the result of a particular computation, thus any attempts
to express assignment to a future are semantically nonsensical. However, this be-
havior means that any program that uses only blocking reads and does not cause

such a write-twice error cannot have any data races on write-once variables, elim-
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inating a major cause of race conditions?. It is also possible to express deadlocks
if the variable is never written to.

Write-once variables have proven to be a powerful construct in task-parallel
coordination languages, as they allow imperative languages to enjoy some of the
more powerful properties of functional languages. For example, in Compositional
C++, if two components of a program are themselves deterministic, then when
composed in parallel [13] using only write-once variables for communication, the
property of determinism is preserved. Swift [79] also uses write-once variables to

achieve similar determinism properties.

2If there are other sources of nondeterminism in the program, such as I/O or synchronization
using nondeterministic mechanisms, then it is possible that the number of writes to a variable will
be nondeterministic
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SECTION 4

Motivation

The rest of this paper describes a Python library and programming model called
PyDFlow that is designed to provide similar functionality to parallel scripting
languages like Skywriting [57] and Swift [79]. PyDFlow currently supports a
large subset of the features of Swift embedded within Python, and demonstrates
the feasibility and value of embedding parallel data-flow coordination within a
general purpose serial language.

In this section the specific considerations that played a role in its design are

explained.

4.1 Extending a Scripting Language with Coordination

Constructs

We chose Python as a host language because of its popularity among program-
mers and because it provides powerful features to extend the language such as
introspection and decorators allowed us to achieve the desired semantics without
introducing a large amount of boilerplate code into user code. At the same time,
Python has disadvantages. For one, it is an interpreted language and as a result,
significantly slower than many alternatives. However, as discussed in Section 2.6,
for most intended uses, this is not a problem, as the advantages of the language
for rapid development can be significant. We try to leverage this advantage by
designing the library to allow programmers to more easily leverage parallel sys-
tem, by readily parallelizing those parts of a serial program that could be split into
tasks with data dependencies between them.

There are a number of libraries that allow task-parallel computation in Python.
The built-in multiprocessing module provides a means to execute tasks in parallel
on multiple CPUs, while [Python [61], PiCloud[28] and Celery [68] provide tools
to execute Python functions on a pool of workers, some or all of which may be
on remote machines. Celery and PiCloud support dependencies between tasks:
Celery tasks can spawn subtasks, while PiCloud provides a form of deferred result

equivalent to a future and also permits explicit job dependencies to be specified.
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PaPy provides a form of data-flow parallel programming to Python [15] that uses a
pipeline metaphor where components are explicitly connected together with data
pipes, either by Python function calls or with a graphical user interface.

There are several important additional features that PyDFlow provides, that are
important for its goal to be a general purpose task-parallel coordination language

that fits naturally in Python:

e Standard mechanisms to support the definition of task types that are not

simple Python functions and may execute on remote systems.
e A consistent abstraction for handling arbitrary types of remote data.
e Ability to construct and manipulate data structures containing futures.
e Ability to functionally compose parallel scripts.

e An implementation of futures that integrate naturally into the language so

that tasks can be chained together with simple function invocations.
e Ability to handle large task graphs.

e Data type description and checking to catch type errors before execution.

4.2 Major Design Considerations

o Integration with host language: One of the pitfalls observed in past at-
tempts at creating coordination languages is that, while designing a novel
language and runtime from the ground up allows a lot of flexibility in lan-
guage design and implementation, the burden it places on applications pro-
grammers of learning a new language, and the difficulties of integrating a
new language with existing codebases, limit the applicability of the coordi-
nation language [34]. A key goal of PyDFlow is to express task parallelism
without requiring unnecessary rewriting of existing code to fit into a new
framework. Ideally a practical coordination language should allow task-
parallelism to be added to a software module without exposing this imple-

mentation detail to clients of the module. Further, it should also allow the
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integration of existing code in different languages or on different systems

into parallel tasks.

This means that new constructs introduced should largely be orthogonal to
the existing control flow constructs and it should be possible to manipulate
the functions and futures provided by the library in a way that is natural to

a programmer who already knows Python.

In particular, it should be possible to use Python control flow constructs such
as for loops, list comprehensions and generators; task definitions should be-
have in the same way as standard Python functions; it should be possible to
copy references to data objects in the same way as standard Python objects,

and data items should be safely garbage collected as it goes out of scope.

Minimal syntax: The library constructs should allow a parallel compu-
tation to be expressed with the minimal amount of extra code required to
specify the parallelism and dataflow in the computation. The mantra DRY
(“Don’t Repeat Yourself”) [40] is popular in the dynamic languages com-
munity and is a generally good principle of software construction. We want
to minimize the amount of extra code required to enable parallel execution

of tasks.

Extensibility: It should be possible to extend the library with new types
of tasks that permit execution of computations on a variety of different ex-
ecution platforms, including: local multi-core CPUs, attached GPUs, re-
mote nodes in clouds and clusters, and on local or distant supercomputer
resources. This requires the ability to extend the library with new I-var
types to represent data of different types, formats, and in different locations,

which can be consumed and produced by tasks.

Such extensibility not only has the practical benefit of allowing parallel
scripting to be applied to new domains, but also serves to force the devel-
opment of a clean model of task coordination and execution that is divorced
from the peculiarities and implementation details of the particular system

being coordinated.
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¢ Efficient support of remote tasks and data: PyDFlow aims to coordinate
the execution of tasks on remote machine, which will potentially be operat-

ing on large amounts of data.

It is thus essential that as much intensive computation and I/O as possible
remains local to the data and the execution of tasks. We need to provide
abstractions that allow intuitive and powerful specification and manipula-
tion of remote tasks and data, but which can implement as many possible
operations as calls to procedures running on remote machines, near to the

data.

We want the bulk of work to occur in the data space, with only a small

amount of computation occuring in the coordination space’.

For example, if a task running on a machine in a cluster requires data on
another machine on the cluster, the only action that should be required in the
coordination space is triggering a remote function that performs the work to
set up the data transfer. Even better is if data dependencies can be resolved
entirely in the data space: for example if the cluster machine is passed a

reference to the data, and then is able to retrieve the data for itself.

e Moderate overhead: As much as possible, the overhead of the task graph
execution per task should be constant and delay in starting execution of tasks
should be minimal. Functional programming implementation techniques

adhere to these constraints, so can provide some guidance.

e Support for computations of unbounded size:

1) techniques for throttling unbounded paralalism (eg the Swift foreach.throttle
property) and

2) techniques that enable actual tasks to be lighter weight than an OS or
language (ala Swift) A system that requires the entire task graph to be con-
structed in memory is limited in its applicability, as it cannot support com-

putations that are either large scale, long running or have many small tasks.

Isee Section 2.7 for a definitions of data and coordination spaces
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It would be possible to build and run a task graph in pieces using Python’s
sequential constructs. But this is clumsy and asks too much of application
programmers. It also has the disadvantage that it can easily result in the
insertion of unnecessary sequential barriers and bottlenecks as an artefact

of the programming model.

Functional languages do not have this problem, as it is possible for the tasks
to create dependent tasks recursively. This suggests one way to avoid this
problem: have primitives that allow for construction of the task graph on
the fly, for example by recursively unfolding a tree of tasks implementing
a parallel reduction. We also need garbage collection to allow cleanup of

finished tasks and data, as explicit resource management is unwieldy.

Support for non-fixed task graphs: There are many scenarios where the
application cannot be naturally expressed as a fixed task graph. For exam-
ple, it would be common to have parallel optimization procedures where the
results of each phase must be inspected to check to see whether the proce-

dure has converged and can be terminated.

By working within Python, we already have this: we can use Python’s se-
quential control flow constructs. For the optimization procedure, we could
have a loop that built and ran the task graph for one iteration, checked the
condition, and then built and ran the next iteration’s task graph, using the

prior results as output.

Feasibility of parallel execution: The model of computation for the task
graph should not have any fundamental constraints that prevent distributed
execution of the task graph. In particular, if the semantics of the task graph
were defined so that all of the control flow must be managed centrally, then
we would be stuck with a master-worker system, which has fundamental

limits on scalability [51].
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SECTION 5
Basic Design of PyDFlow

This chapter discusses the basic design decisions made in implementing PyDFlow
and provide a rationale for the basic architecture of the system. The current design

and implementation is intended as a proof of concept to demonstrate that:
e The coordination primitives are both concise and expressive.

e Different types of task and I-var can be accommodated within the same

framework

5.1 Applying Functional Programming and Task Graphs

As discussed in Section 3.2, there is a close similarity with this representation
of the task graph and the way suspended computations are represented in lazy
functional languages. By recognizing this similarity, we can take advantage of
previous work on parallel and lazy functional languages to gain straightforward
semantics and clean syntax for dealing with concurrent and asynchronous tasks,
by introducing write-once variables and lazy evaluation into the Python language.

Since the target is to embed the language within Python, an imperative lan-
guage, we unfortunately cannot build a side-effect free language from the ground
up, which means that we rely on convention rather than hard guarantees to avoid
side-effect-related mischief.

We want tasks in to be able to represent a variety of different asynchronous
parallel computations. This is similar to workflow systems using the task graph
model, where typically the interface for a task in in workflow is general enough
that extensions can be written to support new task types. PyDFlow tries to remain
as agnostic as possible about the actual nature of the tasks: they could be arbitrary
computations occuring in arbitrary places operating on arbitrary data, being co-
ordinated through appropriately-defined proxy objects for the task and input and
output data.
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5.2 Primitives

For PyDFlow we draw on ideas from both the task graph model and the lazy func-
tional model. PyDFlow is a task-parallel coordination language in which the basic
unit of execution is a task, and where data dependencies between asynchronous
tasks are represented by write-once I-vars (§5.3.1). We use Python’s decorator
metaprogramming feature to implement a new type of PyDFlow function (§5.6)
that enables varying task types to be expressed concisely in Python.

These tasks and I-vars, discussed in more detail in Section 5.3, can be linked
together into a task graph, portions of which are executed on demand when an
I-var is forced. As the task graph executes, tasks fill in heir output I-vars, and thus
enable their dependent tasks to execute. [-vars can be explicitly created and bound
to data (§5.3.2), or can be the deferred result of a PyDFlow task, in which case
we call that I-var the output I-var of the task. An output I-var holds a reference to
the task to be executed, which is started when the value of the I-var is demanded.
Thus output I-vars behave like explicit, lazy futures.

We can use the idea of separate coordination and data spaces to explicate the
abstraction further. The task graph exists in coordination space, with the PyDFlow
tasks objects as proxies for computations, and I-vars as proxies for data in the data
space. Thus, the task graph is merely a convenient and compact abstraction of a

much larger computation that is being coordinated.

5.3 Details of Abstractions

5.3.1 I-vars

A PyDFlow I-var takes its name from the related variable type in the Id program-
ming language [58], but is different in three ways. First, it is a proxy for data that
is stored externally to the current process, rather than for an in-memory value or
object. Secondly, it can have lazy semantics: if the PyDFlow I-var is the output of
a task, then the task is started only on demand. Thirdly, the PyDFlow I-var is not
integrated at the language level: explicit operations are used to read and write to

an [-var.

40



CLOSED (unbound) 3 try read CLOSED (bound)
CLOSED_WAITING

. Error propagated
\ via dependency -’

"'Error propagated

¢ via dependency .
. Writing finished, future set
<signal output tasks>

prepared for write
<storage allocated>

try_read
<signal output tasks>

" Input task fails

ERROR

Figure 5.1: State transition diagram for PyDFlow I-vars. Not shown is the state
transition that can occur from any state when the I-var is garbage collected.

All I-vars are implemented as a subclass of Ivar, which supports several
standard operations. The << operator directs the output of a PyDFlow task to
an I-var. Invoking the ger method on the I-var blocks the calling thread until
the I-var’s data is available, starting the associated computation. An additional
asynchronous spark method is also provide that starts the computation running
but does not block.

We decided to give I-vars this lazy, rather than eager, behaviour because it
gave more control to the programmer, by allowing the times of graph construction
and execution to be distinct. The use of write-once variables was necessary to
implement data flow semantics in Python, a sequential language. It allows the
results of parallel computations to naturally be manipulated with Python’s built-in
control-flow constructs without requiring any complex synchronization logic to
handle the asynchronous tasks.

After an [-var is created, the sequential Python program is free to pass the I-var
as an argument to any Python function (but most likely to other PyDFlow func-

tions); insert them into data structures (lists, hash tables, etc); or use them as input
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for future computations. A more restrictive fork-join version of task parallelism
would not give the same freedom in how the program can be structured.
Write-once variables like these [-vars seem to provide a natural bridge between
the sequential and parallel world: data driven computations can be specified and
then initiated by the sequential part of the program, with synchronization occuring

when the sequential part of the program requires a value to proceed.

5.3.2 Binding I-vars

It is often useful for an I-var to be associated with a location in memory, in a file
system, or in some other means of storage, particularly when I-vars are merely
proxies for external data such as files. It is common that a programmer not only
wants to have a programmatic handle to the future result of a computation, but they
also want the result of the computation to end up in a particular place in memory
or in a file system. It is also often necessary that an I-var should be associated
with already existing data, whether it be a variable in memory or a file on disk.

Beyond the features of a traditional I-var, PyDFlow I-vars have a concept of
“binding” an I-var in common with Swift [79]. If an I-var is bound to a Python
value, for example a string in memory, then reading from the I-var will always
return that value. If it is bound to a location, then the idea of binding is overloaded:
the [-var might either be read or written. If it is read from before being written to,
any preexisting data in the bound location will become the contents of the I-var.
If an I-var is written to and not bound to a location - typically if the output of a
PyDFlow task is directed to the I-var, then data is written to the bound location of
the [-var.

A I-var can also be unbound. The implementation of an I-var in PyDFlow
is responsible for allocation of temporary storage, such as a temporary file, for
unbound I-vars. We take advantage of Python’s garbage collection to clean up
temporary data for unbound I-vars: when an I-var object is garbage collected, it is
responsible for cleaning up any temporary resources it uses.

When an I-var is bound to a location or some data, the PyDFlow core system
treats the contents of a location as being an opaque object. More sophisticated no-

tions of binding can be supported, but this is left to the I-var implementation. This
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Figure 5.2: PyDFlow Software Architecture illustrating the relationship between
the core of the PyDFlow software and the components of an extension.

is in contrast to Swift, where a more complex notion of binding, called mapping,
exists. The data bound to a varaible might consist of multiple files, directories and
records within a file that are be mapped to a logical data type in Swift comprising
arrays and structures. There has been research on how to define such mapping in
a general enough way to capture a large range of different storage schemes and
data formats with specification languages like DFDL [62] and XDTM[55].

The state transitions for any PyDFlow I-var type are illustrated in Figure 5.1.
Abstracting an I-var’s behavior in this way allows PyDFlow to manipulate task
graphs in an abstract way that is independent on the implementation of a particular

[-var type.

5.4 System Architecture

The relationship between the different components of PyDFlow is illustrated in
Figure 5.2. We view PyDFlow as a core set of modules which manage the cre-
ation and execution of a task graph, along with extension modules which support
execution and management of different types of tasks and data. An extension is
implemented by coding a number of classes and modules to standard interfaces,

building on top of the core PyDFlow functionality.
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5.5 Extensions

Two different extensions have been implemented in the current version of PyD-

Flow.

@func ((py-ivar), (py-ivar))
def hello (name):
return 'hello ’° + name + !’

# we can create an unbound ivar
X = py-ivar ()

# or we can bind the var to some data
y = py-ivar(’there’)

# this will print the string ’there’
print y.get()

x << hello (y)

# This will print the string ’'hello there!’
print x.get()

Figure 5.3: A PyDFlow program using concurrent Python tasks. py_ivar is an
I-var type that can contain any Python value

The first facilitates concurrent execution of Python functions. A new type of
task is defined by applying the decorator @ func to a Python function. The basic I-
var type that is consumed and returned from these tasks is a py__ivar, containing
a Python value. The computation performed by these tasks can be pure Python
code, but could also invoke functions coded in other languages using a language
interoperability tool such as SWIG [8] or Babel [48] or even use inline C code
using a tool like Weave [43]. Tasks can also use any Python library, including
high-performance libraries such as NumPy [43], which can enable performance
much greater than that of interpreted Python code. A simple example is shown in
Figure 5.3.

The second extension facilitates execution of external application programs
that produce and consume files. These files are represented with the file_ivar
I-var type, which is a proxy to data stored in a file system. A task is defined
by applying the decorator Gapp to a Python function. The decorated Python
function must return an App specification with the name of an application and
command line arguments. This approach gives a great deal of flexibility in how

the application command line can be constructed. The code within this function
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@app((localfile), (localfile, str)) # str is the standard Python string type
def line_append(infile , suffix):
> Appends suffix to end of each line ’’°
regex = 's/$/° + suffix + °/°
return App(’sed’, regex, infile, stdout=outfiles[0])

# oldfile.txt should already exist
in_ivar = localfile(’oldfile.txt’)

#the output of a function is redirected to newfile. txt
out_ivar = localfile(’newfile.txt”)
out_ivar << line_append(in-ivar, 7!”)

out_ivar.get() # run my_function and wait until result ready

# file ivars provide an open() method to read from the file

# we print the numbered lines of the file

for i, line in enumerate(out_ivar.open().readlines()):
print i, line

Figure 5.4: A PyDFlow program that executes external applications. localfile is
a specialization of the file_ivar I-var type that represents a file on the local file
system.

has access to arguments that will contain the path of the input file_ivar, for
arguments of that type, or can contain a simple Python variable, which allows
Python values to be used in the command line. A simple example is shown in

Figure 5.4.

5.6 PyDFlow Functions

The previous section showed that new types of PyDFlow tasks could be defined
using decorated functions hello and line_append. We refer to these decorated
functions as PyDFlow functions.

The first example of a PyDFlow function, hello is simply a lazy version of
the plain Python function that was decorated: the @ func decorator simply trans-
forms a function into being a lazy PyDFlow version with a py_ivar as its out-
put. We can assign the task’s result to an I-var using the << operator. This also
works if the PyDFlow function has multiple output I-vars, for example by writing
x, y << f(a, b).

PyDFlow functions also allow the output I-vars to be used in exactly the same

way as futures (§3.4): if the << operator is not used to direct the output of the task
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to a particular I-var, and instead the usual Python assignment operator = is used,
then the return value of the function will be a new unbound output I-var for the fu-
ture value of the function. For example, if we only wanted to allocate a temporary
file for the output of 1ine_append, then instead of the the code in Figure 5.4,
we could instead write out_ivar = line_append (in_ivar, "!"). This
behavior allows functions to be easily composed, with temporary storage for the
unbound I-vars being allocated and freed as needed. For example, we can chain
together invocations of the hello function from Figure 5.3 by simply writing
hello(hello(hello(py_ivar ('there’)))).

As well as making the function lazy, the @app decorator applies additional
transformations to the original /ine_append function in order for it to launch the
extern sed program. The illustrates the flexibility of this decorator mechanism to
implement new task types. The original function did not actually start the com-
mand line application: it merely constructed an App object that describes the task
to be executed. The first argument to App is the executable to be run, and sub-
sequent arguments are the executable’s arguments. The paths of the task’s input
files are directly available as function arguments, while the paths of the task’s out-
put files are represented with placeholders obtained by indexing the special outfile
object. Input and output redirection can be specified using keyword arguments
to App. The Qapp decorator can insert code to take this App specification and
actually run the external application.

These decorators are a special feature of Python that can be applied to func-
tions in order to modify the behavior of functions in quite powerful ways. A dec-
orator can insert arbitrary code to run in place of the original function, although
typically the decorator will simply insert code that runs before or after the origi-
nal function, maybe performing some transformations on the function arguments
or return values. Decorators, such as @app, are implemented as a Python class
with a constructor, which takes some number of parameters, and a single method,
which takes a single function as an argument and returns a modified version of the
function. This process, as it is used in PyDFlow, is illustrated in Figure 5.5.

The PyDFlow decorators insert code in the transformed function to:

e check the types of the input arguments against the input types specified in
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Raw Python function definition PyDFlow function definition
def myfun(x, y): @func ((T1, T2), (T3, T4))
return (x + vy, x - V) def myfun(x, vy):
return (x + vy, X - V)
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Figure 5.5: This figure illustrates how a PyDFlow decorator wraps a Python func-

tion.

1. Creating bound I-vars -<—— Data dependency/pointer
a = future(21774) 2 Python Value
b = future(12388) [} Python Variable Name

2. Applying PyDFlow function
X, Y myfun (a, b)

myfun

PyDFlow I-var
(filled/unfilled)

@0
O

PyDFlow Tasks
(ready/waiting for data)

Figure 5.6: This figure illustrate a task graph being constructed as I-vars are cre-
ated and PyDFlow functions are called to construct tasks and I-vars.
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the second argument of the decorator (§5.11).

e construct a PyDFlow task with an output I-var or output I-vars with the
appropriate output types (the first argument of the decorator), as shown in

Figure 5.6.

The I-vars returned will be unbound, but the task’s output can be redirected to
another bound I-var if needed.
The PyDFlow task constructed represents a suspended computation that can

be run at some later time. When the task is later run, several actions take place:

e Data, or references to data are unpacked from the input I-vars and trans-
formed it into the form required by the real function. The exact transforma-
tion will depend on the task type: for example for file I-vars the file path is

provided to the function as a string.
e The original function is invoked with the unpacked data.

o [f the task is executed asynchronously, the task is dispatched to the appro-

priate task executor.

e Once the task is finished, the task and I-var states are updated and the PyD-

Flow graph executor is notified so it can schedule any newly enabled tasks.

5.7 The Redirection Operator

The operator <<, which we call the redirection operator, has already been intro-
duced as a way to direct the output of a task to an I-var. In this section we briefly
elaborate on its implementation.

The return value of a PyDFlow task is in fact always a new unbound I-var. The
redirection operator is a binary operator that takes two I-vars, for example with the
statement x << vy. Here the I-var vy is redirected to x, which means that the task
that previously would have written its output to y will now write its output to x.

A PyDFlow function returns an I-var, so this permits us to write x << £ ()

if we want to direct the output of £ () to the I-var x.
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In contrast, using the assignment operator (ie. x = £ ()) would assign the
newly created I-var to the variable x, overwriting the reference to the original x.
So, = assigns a Python value to a Python variable, while << assigns the present or
future contents of one I-var to another I-var.

It is also possible to use an idiom that permits binding and assigning to a
Python variable in a single statement. The statement
x = localfile("/path/to/file") << f () expresses both the bind-

ing of an I-var and the direction of a task’s output to the I-var.

5.8 Task Graph Representation

The suspended computation that is created by successive PyDFlow function calls
can be thought of as an in-memory task graph of linked Python objects. It is a
graph of Tasks and I-vars: each Task is linked to its input and output I-vars.

Whenever a PyDFlow function is applied to some arguments, a new task is
created, representing the suspended computation. No execution of tasks occurs
until the value of one of the I-vars is demanded using the get or spark methods.

Execution of tasks is performed by an execution model that traverses the task
graph, executing the tasks needed to fill the target I-var. As execution proceeds,
links between tasks are severed when no longered necessary, allowing the garbage
collector in Python to clean up unneeded data objects. A simple program, and the
execution of the corresponding task graph is shown in Figure 5.7. The execution
algorithms and approach are described in detail in Chapter 6.

The current state of a task or I-var is described by a state tag that is attached to
the corresponding in-memory Python object. Figure 5.1 illustrate the states that an
I-var can be in, and the events that trigger state transitions. The state transitions for
a task are more complex, as they are closely tied to the graph execution strategy.

They are described in detail in Section 6.2.

5.9 Laziness

As discussed in Section 3, the choice of strict versus lazy evaluation poses a sig-

nificant challenge to exploiting parallelism with a lazy evaluation strategy. For-
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# Define a new I—var type to hold integers
Intlvar = py_ivar.subtype()

# Deferred function of type (Intlvar, Intlvar) —> Intlvar
@func ((IntIvar), (IntIvar, Intlvar))
def add(a, b):

return a + b

@func ((IntIvar), (Intlvar, Intlvar))
def gecd(a, b):
# Sequential gcd calc with Euclid’s algorithm
while b != 0:
oldb = b
b=a%b
a = oldb
return a

# Construct task graph for simple computation
# first inserting values into Intlvar containers
x = add(ged(Intlvar(21774), Intlvar(12388)), Intlvar(4))

# execute it, block on I—var, then print value
print(x.get())

1. Initial State -<—— Data dependency/pointer
2 Python Value

ged (_O\ x| Python Variable Name
12388

0

add (——Q I-var
( (filled/unfilled)
‘ DD PyDFlow Tasks
(ready/waiting for data)

§ Severed dependency

gcd <_§ Eligible for garbage
12388 = : collection

2. gcd task runs

i

3. add task runs

12388 - (_§
@/

49

add <—§

Figure 5.7: This diagram illustrates the evolution of the in-memory task graph for
a trivial example. The propagation of data through the task graph and enabling of
tasks can be seen. The interaction of task graph execution with the garbage col-
lector is shown. In the CPython implementation, with reference counting garbage
collection, tasks and I-vars will be collected immediately once eligible.

50




tunately in PyDFlow, many of the issues to do with laziness are not present: all
inputs to tasks are strict by necessity: if the task is an external binary, for example,
then it cannot be run unless all of it’s input files are available (ie. its input I-vars
are filled). This makes it easy to identify parallelism: if a task has more than one
argument, the executor knows immediately that can safely evaluate them all in
parallel.

However, wherever possible PyDFlow is lazy: when a PyDFlow task function
is invoked, evaluation does not commence immediately. Execution of a task graph
only occurs on demand, when the contents of an I-var that is part of the graph is
forced. The lazy evaluation strategy is useful mainly because it allows I-vars to be
constructed, manipulated and passed around without triggering execution. Once
the I-var is forced, race conditions are possible as the graph executor may be
executing tasks and updating I-vars in the graph. Laziness allows the I-var and
task graph to be modified after creation without risk of this type of race condition.

This was particularly useful in the implementation of the redirection opera-
tor (§5.7), which redirects the output of a task to a different I-var. If the task
started running as soon as the task was created, then then the task may start run-
ning and writing its output to the wrong I-var before the redirection operator is
applied, meaning that the data may need to be copied from one place to another

unnecessarily.

5.10 Compound Functions

Given the features described up to now, there is still a serious limitation in PyD-
Flow: only fixed task graphs can be specified. Furthermore, if we have a task
graph consisting entirely of tasks that are strict in all their argument, and that can-
not recursively create new tasks, then the entire task graph to be executed has to
be instantiated in memory before it is executed. This is contrary to one of our
design goals. Our solution to this problem is to have a new class of task that can
recursively create new tasks, which we call compound tasks, matching the name
in Swift. In contrast, the previously defined tasks are called atomic tasks, as they

are indivisible. A compound function has the following properties:
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e It manipulates the I-vars themselves rather than contents of I-vars.

e [t is non-strict in its arguments: the arguments do not have to be reduced to

a filled I-var before the expansion occurs.

An example using a compound function to perform a parallel merge sort is

shown in Figure 5.8.

5.11 Type System

We have included a basic type system for PyDFlow functions. One of the stronger
rationales for a type system is that it can catch errors at compile time. While
Python, by design, cannot support static type checking before execution, with a
system of deferred execution, type-checking at task graph construction provides
some similar benefits to type-checking at compile time, as it can catch type errors
before computation commences.

Python’s type system is a class-based system with multiple inheritance. Ev-
ery PyDFlow I-var already has a Python type ¢ by virtue of being a subclass of
the base PyDFlow Ivar class. For example, all in-memory Python variables
are subclasses of py_ivar, any file manipulated by app functions is a subclass of
file_ivar, and files on the local filesystem are subclasses of localfile, which is itself
a subclass of file_ivar.

Every PyDFlow function has a function type mapping from tuples to tuples
of the form (t1,...,t,) — (s1, ..., Sm), Where ¢; is an input argument, and s; is a
return value. The type of a PyDFlow function is specified as arguments to a deco-
rator. For example, @func ( (A, B), (C, D, F)) specifies that the function
should have type (C, D, F') — (A, B). The output types of the function must all
be I-var types (because all outputs are wrapped in I-vars), but the input types can
be any valid Python type, or None if type checking should be disabled for that
input argument. In the current implementation, the types of input arguments to
a function are checked at runtime when a function is applied. If the I-var types
don’t match the type signature of the function, a type error will occur. This means
that type errors are caught before the task begins to execute. The type checking

handles optional and keyword arguments correctly.
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# define new file types
numfile = localfile.subtype ()
sorted_numfile = numfile.subtype ()

@app ((numfile), ())
def make_empty () :
return App(”touch”, outfiles[0])
@app((sorted_numfile), (numfile))
def sort(f):
return App(”’sort”,

» » ”» ”»

—n”, "—0”,
@app((sorted _numfile), (sorted_numfile ,
def merge(fl, f2 ):
# use unix sort utility to merge two
return App(”sort”, "—n”, "—o0”
@compound (( sorted _numfile ),
def merge_sort(xunsorted):
# unsorted is a list of numfile
if len(unsorted) 0: # if no
return make_empty ()
len (unsorted) == 1:
return sort(unsorted [0])
else:
# split the list
split = len(unsorted)/2
fl = unsorted[0: split]
f2 = unsorted[split:]
return merge(merge_sort(xfl),

ivars
inputs

elif

# 100 unsorted files from unsorted_0.txt
unsorted = [numfile (”unsorted_%d.txt” % i

result = sorted_numfile(”sorted.txt”)
# % operator expands so that each list
result << merge_sort(xunsorted)
result.get()

to better represent

outfiles[0],

outfiles [0], "—m”,

element

different classes of files

)

sorted_numfile))

sorted files

f1, f2)

(Multiple (numfile)))

provided

in two and handle recursively

merge_sort(xf2))

to unsorted_99.txt
) for i in range(100)]

is an input argument

Figure 5.8: Example code performing a parallel merge sort of a number of files
on disk using the Unix sort utility. The files must be in text format and con-
sist of numbers separated by line breaks. The function merge_sort implements
divide-and-conquer in order to merge sort the files, with the task graph forming a
reduction tree with the unsorted files at its leaves, intermediate sorted files at its
internal nodes, and the sorted file at its root. The code in the merge_sort function
is invoked lazily when the graph executor explores a particular branch of the tree,
unfolded it gradually.
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If an input argument’s type is not a subclass of Ivar, then the value of the
argument is passed directly to the function body. This is useful for parameterizing
I-vars: it is fairly common that users would want to provide parameters to tasks
that are numbers, strings, or some other primitive data type. Special processing
of Ivar arguments can be implemented, depending on the type of task and I-var.
For example, if a file_ivar I-var representing a file is passed to an Qapp-
decorated function, then the file’s path is substituted for the I-var as the input
argument.

When it comes to the outputs of a function, PyDFlow’s type system is limited
in the checking it can perform on the output types, because the framework regards
the contents of I-vars as opaque. It simply assumes that the output of a task is a
valid instance of that type, and tags it as such.

This typing scheme for executables and files is derived from Swift, but has
also been explored before by the Saguaro operating system [3], where executa-
bles can be typed in a similar way. Saguaro can deal with the output type problem
because it integrates a Universal Type System, which specifies the internal struc-
ture of files, but this assumes a particular machine-independent file structure and

is inappropriate for a system that must

5.12 Similarity to Swift

As a result of all of the design decisions described, we end up with a scripting
interface that bears a close resemblance to Swift in functionality and style, but is
implemented as a library and can interact with standard Python code. To illustrate,
Figure 5.9 and Figure 5.10 show an example script that “processes” and analyzes
NASA MODIS satellite data [18] written in PyDFlow and Swift respectively.
Both scripts start with a set of satellite image tiles in which each pixel has
been classified into one of a small number of land usage categories, such as forest,

farmland, desert or ocean. The scripts perform the following steps:
1. Extract the number of time each land use appears in the pixels of each tile.

2. Analyze these statistics to determine the 10 tiles with the largest number of

urban pixels.
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# Define new localfile types
imagefile = localfile.subtype ()
landuse = localfile.subtype ()

@app((landuse), (imagefile, int))
def getLandUse(input, sortfield):
return App(’getlanduse.sh’, input, sortfield , stdout=outfiles[0])

@app((localfile , localfile), (int, int, Multiple(landuse)))
def analyzeLandUse(usetype, maxnum, xinputs):
return App(’analyzelanduse.sh’, outfiles[0], outfiles[1], usetype, maxnum,
modisdir, *inputs)

@app((imagefile), (imagefile))
def colormodis(input):
return App(’colormodis.sh’, input, outfiles[0])

# Mappers return read—only array.

geos = GlobMapper(imagefile , os.path.join(modisdir, */x*.tif’))

land = SubMapper(landuse, geos, “(h..v..).*$’, *\\1l.landuse.byfreq’,
directory=outputdir)

# Find the land use of each modis tile
# zip allows us to iterate over two lists in tandem
# PyDFlow << operator directs output to mapped file
for 1, g in zip(land, geos):

1 << getLandUse(g,1);

# Find the top 10 most urban tiles (by area)

urbanUsageType=13;

bigurban = localfile (os.path.join(outputdir, ’topurban.txt’))
urbantiles = localfile (os.path.join(outputdir, ’urbantiles.txt’))
(bigurban, urbantiles) << analyzeLandUse (urbanUsageType, 10, xland)

# Map the files to an array.
# script blocks here on open() command until urbantiles ready
urbanfilenames = [line.strip () for line in urbantiles.open().readlines ()]

# Use built—in map to apply imagefile constructor to filenames
urbanfiles = map(imagefile , urbanfilenames)

# Create a set of recolored images for just the urban tiles
recoloredImages = []
for uf in urbanfiles:
recoloredPath = os.path.join(outputdir,
os.path.basename (uf.path()).replace(’.tif’, *.recolored.tif’))
recolored = imagefile(recoloredPath) << colormodis (uf)
recoloredImages .append(recolored)

# Start everything running and wait until completion
waitall (recoloredImages)

Figure 5.9: MODIS example in Python that demonstrates the look and feel of the
language. This script shows a variety of different ways that I-vars can be manipu-
lated and stored using Python data structures. For example, the recoloredlmages
list is constructed by appending items one at a time, while the land list is con-
structed using a “mapper” function.
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type file;
type imagefile;
type landuse;

app (landuse output) getLandUse (imagefile input, int sortfield) {
getlanduse @input sortfield stdout=@output ;
}

app (file output, file tilelist) analyzeLandUse (landuse input[], int usetype,
int maxnum, string input_-loc) {
analyzelanduse @output @tilelist usetype maxnum input_loc @filenames(input);

}

app (imagefile output) colormodis (imagefile input) {
colormodis @input @output;
}

imagefile geos[]<filesys_mapper; location=input_loc, suffix=".tif”>;
landuse land[]< structured_regexp-mapper; source=geos,match="(.x)\\.tif”,
transform="\\1.landuse.byfreq”>;

# Find the land use of each modis tile
foreach g,i in geos {

land[i] = getLandUse(g,1);
}

# Find the top 10 most urban tiles (by area)

int UsageTypeURBAN=13;

file bigurban <”topurban.txt”>;

file urbantiles <’urbantiles.txt”>;

(bigurban, urbantiles) = analyzeLandUse(land, UsageTypeURBAN, 10, input_loc);

# Map the files to an array

string urbanfilenames[] = readData(urbantiles);

trace (urbanfilenames) ;

imagefile urbanfiles[] <array_mapper;files=urbanfilenames >;

# Create a set of recolored images for just the urban tiles
foreach uf, i in urbanfiles {
imagefile recoloredlmage <single_file_mapper;
file=@strcat( @strcut(urbanfilenames[i],”(h..v..)”) ,”.recolored. tif”)>;
recoloredImage = colormodis(uf);

}

Figure 5.10: MODIS example in Swift
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3. Recolor these 10 tiles to be human-viewable.
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SECTION 6
Execution of Task Graph

In this section we describe how the PyDFlow runtime executes a task graph within
the graph executor module. Viewed as a black box, the interface to the graph
executor model is simple: to initiate execution, an I-var is passed to the graph
executor module. The graph executor model then traverses the task graph and
executes all necessary tasks to fill the I-var. As the graph is executed, the state of
the task graph is updated and I-vars are filled. User code can receive notification
of when data is ready by waiting on an I-var, or by registering to receive callbacks
from an I-var. The overall flow of data is illustrated in Figure 6.1, and the process
of updating a task graph was shown previously in Figure 5.7.

The graph executor module has a configurable number of worker threads that

collaboratively execute a task graph.

6.1 Executing Synchronous and Asynchronous Tasks

The execution of a PyDFlow task is broken up into two phases:

e Synchronous phase: in which some amount of computation occurs in a

graph executor worker thread.

e Asynchronous phase: in which the task is executed outside of the graph ex-
ecutor module, for example on a remote host. This asynchronous execution

would be supported by a separate asynchronous task executor component.

The implementation of each task type determines what computation occurs
in each stage. The asynchronous phase is optional. For example, local Python
function tasks only need to execute synchronously in a worker thread, but a task
that invokes an external application does so asynchronously.

Tasks that have only a synchronous phase are called synchronous tasks, while
tasks that also have an asynchronous phase are called asynchronous tasks. The

distinction is important for the executor, as in order to support an asynchronous
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Figure 6.1: A high level view of task graph execution showing the flow of tasks,
I-vars and messages between different components of PyDFlow.

task type, the graph executor, which is responsible for managing inter-task de-
pendencies, needs to be notified by the asynchronous task executor when tasks
complete.

This can be implemented by inheriting from the PyDFlow Task class (or a

subclass thereof) and overriding the exec method, as showing in Figure 6.2.

6.2 Depth First Traversal of Task Graph

When an I-var is forced through the get() or spark() methods, then the I-var is
added to a graph executor queue and it becomes a farget that the graph executor
will fill by resolving all of its dependencies.

It does this with a depth first search (DFS) of the directed acyclic task graph,
maintaining a stack of unresolved I-vars. At any point in time a graph executor
thread is focusing on a target I-var. At first it checks the task for which the I-var
is an output: running that task is required to fill the I-var. If it can immediately
resolve the target by executing the task, it will execute that task. If the task has
unresolved dependencies, it will continue the search to resolve the dependencies.
The depth first exploration can end in two ways. A I-var may be successfully

resolved, and the new target obtained from the stack. Otherwise a target I-var
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class CustomTask (AtomicTask):
def _exec(self, continuation, failure_continuation , contstack):
<< run user—provided task function to get task specification >>
<< add task, continuation, failure_continuation , contstack
to execution queue >>

def isSynchronous(self):
return False

def monitor_loop () :
This function is an event loop run by a separate handler thread
to manage asynchronous execution of tasks.
while 1:
if << execution slot avail >>:
<< try to get new task from execution queue >>

<< if new task available , prepare input and output I—vars
and start asynchronous execution >>

<< check if tasks have finished >>
for all finished tasks:
if task failed:
failure_continuation (task, exception)
else:
continuation (task , contstack)

Figure 6.2: Pseudocode showing how a new asynchronous task type and corre-
sponding executor can be implemented for PyDFlow.
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Figure 6.3: State Transition Diagram for PyDFlow tasks

might be encountered with pending dependencies: for example if all the tasks it
depends on are being executed. In this case the graph executor must suspend the
I-var, to be resumed (through the resume queue) when all of its dependencies are
resolved. This process is illustrated in Figure 6.4.

All communication between the graph executor thread and client code of the
library occurs through the task graph. The graph executor thread updates the state
of all the I-vars and tasks in the task graph as execution proceeds Client code can
query the state of I-vars, block on I-vars, and also register functions to be called
when I-vars are filled.

The strategy has some similarity to the graph-reduction approach to evaluating
applicative languages, where a graph represents the program, and it is executed
by incrementally rewriting and reducing the graph [74]. The Glasgow Haskell
compiler, the standard implementation of Haskell, uses a highly optimized ver-
sion of graph reduction [44]. The optimizations used cannot be applied easily to
PyDFlow, as they depend on the specific low-level details of the programming

language and involve various low-level compiler tricks. In particular, knowing
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Figure 6.4: A detailed look at the PyDFlow graph executor module, showing how
data passes between the worker thread stack, the input and resume queues, and
the asynchronous executors.
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the exact type and binary representation of all program data allows many sophis-
ticated optimizations to be performed based on program analysis. As a result, the
graph execution method used in PyDFlow resembles an unoptimized naive graph
reduction approach, where a PyDFlow task graph is executed by incrementally
updating an in-memory graphical structure. However, the task graph execution in
PyDFlow includes a number of tricks that can improve the performance of dis-
tributed programs.

The states and transitions for PyDFlow I-vars were shown earlier in Figure 5.1.
The state diagram for PyDFlow tasks, shown in Figure 6.3, is significantly more
complicated. The complexity comes for a number of reasons. In some cases
we simply want to distinguish between two states simply so that the status of
execution can be determined from the task graph: separate QUEUED and RUN-
NING states are not needed for correctness, but it will be useful in the future
if a user wants a snapshot of the state of a longer-running computation. The
rest of the complexity comes because of the modular nature of the implemen-
tation: the task object is accessed by a variety of different modules. In order
to support asynchronous tasks that did not run in the graph executor thread, to
avoid repeatedly dispatching the same task, for example if it was reached multi-
ple times on the DFS of the task graph, it was necessary to distinguish task that
were ready to run (DATA_READY) and tasks that had been dispatched to be exe-
cuted asynchronously (QUEUED). Implementing multiple execution threads with
workstealing (§6.3.3) also required the QUEUED state in order to avoid race con-
ditions where multiple threads executed the same task. Promise pipelining (§6.4)
required the addition of the CONTINUATION state, to describe a task that was
waiting for data that would be propagated through a pipeline.

6.3 Parallel Evaluation

6.3.1 Limitation on Parallelism Imposed by Python

The amount of parallelism possible when running native python code is unfor-
tunately limited by Python’s Global Interpreter Lock (GIL), an artifact of the

CPython implementation that uses a single shared lock to control access to in-
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terpreter data structures.

Python’s implementation uses OS threads to implement its threading module.
However, only one thread in each Python instance can be executing interpreted
Python code at a given time.

In spite of this limitation, there are a number of reasons why providing a mul-

tithreaded evaluator implementation is useful:

e If the synchronous parts of tasks perform a significance amount of I/O, then
we can get speedups. The GIL is released when a Python process is blocked

for I/0, so having multiple threads of execution permits.

e [f the computationally intense parts of synchronous tasks are performed out-
side of Python, for example in a C extension module. It is possible for
Python extension written in a language such as C or Fortran to release the
GIL if the extension procedure does not require access to the Python inter-

preter.

Typically applications written in Python for which performance is impor-
tant will have significant portions of the program or supporting libraries
that are not interpreted Python code. For example, the popular numpy li-
brary for Python provides efficient subroutines for linear algebra and other

mathematical operations that release the GIL while they execute.

e itis useful as a initial step towards an implementation of a distributed mem-

ory evaluator

e it provides insight into parallel evaluation strategies for implementations of

Python without the GIL limitation, and for different languages.

6.3.2 Parallel Graph Execution

Treating the evaluation of the task graph as an exercise in graph traversal and up-
dates translates in a relatively straightforward way to a parallel evaluation strategy
in shared memory: we just need multiple threads of evaluation, a way to create

and share work between threads and logic to ensure safety.
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Parallel versions of the g-machine have been proposed, such as the (v, g) ma-
chine [5]. The parallel evaluation technique used for PyDFlow has similarities.
The (v, g) machine relies on a explicit “spark” annotation to specify that a graph
node is a candidate for parallel evaluation. When a node is sparked, it is entered
into a shared work pool, from which evaluation threads draw work. Flags on a
node are marked to indicate whether a thread has started work on evaluating a
node.

The current parallel evaluation strategy implemented for PyDFlow is a bit
more complex. I-vars can be made targets (i.e. sparked) when the get() or spark()
methods are called by client code. These I-vars are entered into the input queue,
shown in Figure 6.4. A simple strategy for parallel execution would be for each
execution thread to add unexplored branches during the DFS back into the in-
put queue, so that they can be executed by other threads. Such a work-sharing
strategy with a central queue, however, has downsides: adding and removing
items from the queue constantly requires significant synchronization overhead,
and the strategy does not have good data locality properties. Instead we use a
work-stealing approach, where each thread retains ownership over all of the target
I-vars in encounters in its search until an idle thread “steals” the work. Different
work-stealing approaches can produce good load balance, increase the probabil-
ity of data dependencies being in a processor’s cach and reduce the amount of

synchronization by avoiding querying a central queue [10].

6.3.3 Work-stealing

The PyDFlow graph executor, showing in Figure 6.4, can be augmented easily to
support work-stealing. Multiple worker threads are added, all of which share the
same input queues and resume queues. Worker threads will attempt to get work
from either of these queues, but if none is available, they will attempt to steal
target I-vars from other worker threads.

Their work stacks can then be stored in a deque (double-ended queue) data
structure, which is designed to support popping data items from either end. The
thread performs a DFS by exploring the graph, adding visited nodes to the right
side of the deque and backtracking by popping them off the right. Other idle
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Figure 6.5: A simple example of promise pipelining

threads will attempt to find work by popping data items off the left side of the
deque. One can see that stealing from the left side is likely to result in stealing
more work, which is desirable for efficiency and load balancing [54]. The stealing
strategy is randomized: a thread looking for work probes the other worker threads
in a random order.

In order to avoid a situation where all threads have no work to do, and are
unnecessarily polling each others’ deques for work, a mechanism is provided for

the threads to go idle if all threads have no work.

6.4 Promise Pipelining

The use of futures allows promise pipelining [49]. Promise pipelining takes ad-
vantage of the dependency information provided by deferred execution and futures
to allow data dependencies to be resolved and computations to immediately pro-
ceed without the intervention of a centralized task manager. A simple example of
promise pipelining is shown in Figure 6.5. In a distributed setting, the boundary
between local and remote would be a network. In PyDFlow, the remote executor

would not necessarily have to be on a separate machine: promise pipelining can
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be used between PyDFlow’s graph execution code and a custom asynchronous
task executor.

The advantages of promise pipelining are:

1. reducing the latency between task invocations if the executor can support
resolving dependencies itself, as there is no network round-trip required to

notify completion of one task and start the execution of another.

This is even more useful if the system is implemented in a centralized way
with a central master dispatching tasks to the workers fashion, as it reduces
the load on the master and also reduces the impact of master latency on the

overall performance of the system.

2. potentially reducing the number of required data copies (this depends on
implementation - if the data is stored on the remote machine and a reference

returned, this doesn’t matter so much).

3. reducing scheduling and task dispatch overhead if a string of dependent

tasks can be dispatched as a unit.

Having a system that understands promise pipelining and can delegate some
scheduling functions to a particular executor is also very useful in being able to
implement executor-specific optimizations. For example, the CUDA toolkit for
GPU programming supports a construct for asynchronous task execution and data
transfer called streams, where a sequence of dependent data transfers and tasks
can be chained together and executed in sequence by the GPU, without requiring
any intervention from the driver program to proceed [17]. This can help to im-
prove utilization of the GPU by making it possible to overlap CPU execution, data
transfers from main memory to GPU memory and GPU computations. In order to
support such optimizations, the use of promise pipelining means that a CUDA ex-
ecutor module for PyDFlow could be take advantage of the stream mechanism to
execute multiple GPU tasks in an overlapped manner and with greater efficiency.

Another example where promise pipelining could be used to implement an
executor-specific optimization is the case where output data of a task can begin to

be read before the process writing to it finishes: i.e. when the intermediate data
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can be streamed (a completely different type of stream to the above-mentioned).
In this case dependent tasks can be scheduled before the task finishes. By using
promise pipelining to provide dependency information to a task executor, the ex-
ecutor can then start dependent tasks executing earlier. It is difficult to anticipate
all possible optimizations for different executors, so by having an understanding
of promise pipelining built into the task graph executor, it is possible to provide
enough dependency information to an executor so that it can implement the opti-
mizations itself.

CIEL implements promise pipelining in order to achieve the above goals, in-
cluding streaming [57]. There are a number of different levels of pipelining that

could be implemented:

1. no pipelining: the PyDFlow task graph executor is entirely responsible for
managing data dependencies. When a task finishes, PyDFlow is notified,
updates task graph state, then will dispatch any tasks that are now disable to

the executor.

2. sequential pipelining: when the graph executor is performing a depth first
search on the task graph, it keeps track of a sequence of tasks that have
no other unresolved dependencies aside from the preceding task in the se-
quence. When a runnable task is found, the runnable task and this sequence
of tasks (which can be thought of as the continuation of the runnable task)
are sent to the executor. This means that the executor can safely execute
these tasks in sequence, notwithstanding a task failure. For a given back-
end executor, we will generally want to execute these dependent tasks all
on the same resource. Notifications of task completion can be send asyn-
chronously back to the master. With this scheme, promise pipelining can

only occur over non-branching sequences of tasks.

3. branching pipelining: when the task graph executor still identifies sequences
of tasks and dispatches these to the executors, but the executor also provides
a way that allows dependencies to be sent to the executor. These dependen-
cies specify a number of I-vars for which the data is needed to proceed, and

a task that should be executed when the data is ready. This way an external
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executor can take responsibility for managing dependencies, perhaps in a

distributed manner.

PyDFlow currently only implements sequential pipelining. This is done while
a worker thread (§6.2) is performing a depth-first traversal of the task graph. As
the traversal proceeds, for each I-var to be resolve, a continuation list is built that
contains a sequence of tasks. In this sequence, each task only needs data generated
by the previous task to become runnable. If a task only needs one input to become
runnable, then the depth first traversal can immediately move to that input task
and the dependent task and its continuation list can be added to the continuation
list of the input task.

The above strategies are complicated by scenarios where the task graph con-
sists of tasks that are executed by two different executors. In these situations we
need to fall back on the first strategy and have dependencies resolved by the gen-
eral PyDFlow infrastructure. For sequential pipelining, this is implemented by
having the asynchronous executor pass back any tasks in the continuation list that

it did not run.
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SECTION 7
Applications

7.1 Montage Astronomical Imaging Workflow

One example application we have implemented in Python with PyDFlow is a sim-
ple workflow constructing an astronomical image using the Montage [42] engine.
This workflow uses an online service that provides access to tiled images of dif-
ferent parts of the sky. The workflow constructs a false color composite image
of a small 3 x 3 degree section of the sky using three different bands of light for
the red, blue and green I-vars of the image. The image is shown in Figure 7.1. It
first contacts an online service, using the mArchiveList application to find the
image tiles are available that fall within that region for a particular color band. It
then parses the text file produced by mArchiveList and downloads each image
tile separately with mArchiveGet. Once the images are downloaded, the tiles
are reprojected to the desired projects for the final image with mProjectPP, and
then combined together with mAdd to create a single monochrome image for each
band that covers the 3 x 3 degree section of the sky.

The workflow must perform all these steps for the different light bands that
will be used in the final image (in this example red, blue and infrared bands are
used). Then, finally, the monochrome images for each of the I-vars are combined
into a single result image using mJPEG.

Some Qapp definitions for the Montage engine, which can be composed to
create different Montage workflows, are shown in Figure 7.2. A relatively simple
example script that generates an image of the Pleaides star cluster is shown in
Figure 7.3. This script was benchmarked against serial and Swift implementations
to demonstrate a speedup over a serial implementation, and its competitiveness

with Swift. The results are shown in Table 7.1.

7.2 URL Fetcher: Integration with other Python Code

PyDFlow has been designed with the consideration that it should fit in with the

rest of the Python language, permitting it to be composed with ordinary sequential
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Figure 7.1: A scaled down astronomical image montage of the Pleaides star clus-
ter.

System || Runtime (s) (5 trials)
bash (serial) 822+ 14
Swift (parallel) 370+ 12.5
Swift+Coasters (parallel) 358 4+ 40
PyDFlow (parallel) 300 £ 15

Table 7.1: Performance of a Montage workflow creating a 3 x 3 degree image of
the Pleaides start cluster, comparing serial execution time with Swift and PyD-
Flow on a four processor desktop PC. The job throttle was set to five concur-
rent jobs for PyDFlow, ten concurrent jobs for Swift, and 15 concurrent jobs for
Swift+Coasters . These settings were obtained by testing a range of parameters
from four to 20 for each system. The time measured does not include the time
taken to download image tiles.
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# PyDFlow file types for Montage.
MosaicData = localfile.subtype () # Text file with mosaic metadata

MTable = localfile.subtype ()

Mlmage = localfile.subtype() # Image tile in FITS format with image metadata
MStatus = localfile .subtype () # mFitplane status file

JPEG = localfile.subtype () # Image in JPEG format

class RemoteMTable(MTable) :
””” Text table describing set of images that can be downloaded 7"
def read_urls(self):
””” Returns a list of (url, image name) pairs from table
for line in self.open().readlines()([3:]: # ignore 3 line header
toks = line.split()
yield (toks[—2], toks[—1])

[IETEN)

# PyDFlow apps for Montage.

app-paths.add_path(path.join(’/var/tmp/code/Montage_-v3.3’, ”bin”))

@app ((RemoteMTable), (str, str, str, None, None))
def mArchiveList(survey, band, obj_or_loc, width, height):
””” Download info from IRSA about image tiles for location in sky
return App(”mArchiveList”, survey, band, obj_or_loc, width, height,
outfiles [0])

LLRIRD)

@app ((MImage), (str))

def mArchiveGet(url):
””” Download an image from the archive
return App(”mArchiveGet”, url, outfiles[0])

FERTED)

@app ((MImage) , (MImage, MosaicData))

def mProjectPP(raw_img, hdr):
””” reproject using plane—to—plane algorithm
proj-img = outfiles [0]
return App(”mProjectPP”, "—X”, raw_img, proj_img, hdr)

[LEIRL]

@app ((MImage) ,(MTable, MosaicData, Multiple (MImage)))
def mAdd(img_tbl, hdr, ximgs):

FERIRY)

adds together images.

img_tbl specifies images to be added, all images must be in same directory

99999

” » » ”»

return App(”mAdd”, "—p”, path.dirname(imgs[0]), "—-n”, img_tbl, hdr,
outfiles [0])

@app ((MTable) , (Multiple (MImage)))

def mImgtbl(*ximgs):
””” Generate text table with image metadata
return App(”mlImgtbl”, path.dirname (imgs[0]), outfiles[0])

999593

@app ((JPEG) , (MImage, MImage, MlImage))
def mJPEGrgb(rimg, gimg, bimg):

FERTEY)

Create rgb jpeg image with three FITS images for R, G, B channels

EERIRY)

return App(”mJPEG”, "—out”, outfiles[0],
"—red”, rimg, "—1s”, 799.999%”, “gaussian—log”,
"—green”, gimg, "—I1s”, 799.999%”, "gaussian—log”,
"—blue”, bimg, "—1s”, 799.999%”, ”gaussian—log”)

Figure 7.2: Shared Montage definitions in PyDFlow
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def strip_ext(path, ext):
”7” Strip given file extension if present

9935 9

n = len(ext)
if len(path) >= n:
if path[—Ixn:] == ext:
return path[:—1x%n]
else:

return path

dims = (3,3) # size of montage in degrees
srcdir = os.path.dirname( __file__) # File source directory
header = MosaicData(path.join(srcdir, “pleiades.hdr”)) # mosaic info

def archive_fetch (bands):
””” Find which image files are needed for this band and sky region
table = RemoteMTable(path.join(bands, ’'raw’, ’remote.tbl’))
return table << mArchiveList(”dss”, bands,”56.5 23.75”, dims[0], dims[1])

99999

def process_one_band(bands, tbl):

””” Create merged image for one band 777

# Download images from server separately

raw_images = []

for url, fname in tbl.read_urls():
# raw images go in the raw subdirectory
raw_path = path.join(bands, ’'raw’, fname)
raw_image = MImage(raw_path) << mArchiveGet(url)
raw_images .append (raw_image)

# projected images go in the proj subdirectory

projected = [MImage(path.join(bands, ’proj’,
# remove .gz suffix for new file
strip_ext(path.basename(r.path()), 7.gz”)))

for r in raw_images]
# Now reproject the images
for proj, raw_img in zip(projected , raw_images):
proj << mProjectPP(raw_img, header)

# Generate a temporary table with info about images
proj_-table = mImgtbl(xprojected)

# Now combine the projected images into a montage
band_.img = MImage(path.join (bands, bands + ”.fits”))
return band_.img << mAdd(proj-table , header, xprojected)

# Get info for the three bands we are interested in
allbands = [’DSS2B’, ’DSS2R’, ’'DSS2IR’]
img_tables = [archive_fetch (bands) for bands in allbands]

# Stitch together tiles in each band
band_imgs = [process_one_band (bands, tbl)
for bands, tbl in resultset(img-tables, allbands)]

# Make a false—color JPEG image out of the three bands
res = JPEG(”DSS2_BRIR. jpeg”) << mJPEGrgb(band_imgs[2],

band_imgs[1], band_imgs[0])
res.get() # Calling get triggers execution

Figure 7.3: Montage script in PyDFlow that creates an image of the Pleaides star

cluster.
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1 | THRESHOLD = 5

2

3| Urllist = py-ivar.subtype ()

4 | Pagelist = py_ivar.subtype ()

5

6 | @func (( Pagelist), (Urllist))

7 | def fetch(urls):

8

9 Fetch a list of urls and store data in a list
10

11 data = []

12 for url in urls:

13 data = urllib.urlopen(url).read()
14 data.append(read)

15 return data

16

17 | @compound (( Pagelist), (Urllist))
18 | def fetch_split(list):

19

20 Recursively split the list until it is in chunks of size
21 <= THRESHOLD, then fetch data

22

23 n = len(list)

24 if n <= THRESHOLD:

25 return fetch(list)

26 else:

27 return join(fetch_split(list[:n/2]),
28 fetch_split(list[n/2:]))
29

30

31 | @func (( Pagelist), (Pagelist, Pagelist))
32 | def join(listl , list2):

33

34 Rejoin result lists

35

36 return listl + list2

37

38 | def fetchurls(urls):

39

40 Fetch a number of web pages in parallel
41 The use of PyDFlow is not visible to callers of this function
42

43 return fetch_split(urls).get()

Figure 7.4: PyDFlow code for a parallel URL fetcher.
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Python programs without any unnecessary limitations.

This example demonstrate one way in which PyDFlow can be integrated as
a component of a larger Python program, allowing incremental parallelisation of
a program. This example shows how Python can use an existing Python library-
urlib, and also how PyDFlow can be used transparently to parallelize a single
function. The code for a program that fetches web URLs in parallel is shown
in Figure 7.4. A large list of URLs is broken down into chunks of at most size
5 using the fetch_split compound procedure, and then multiple PyDFlow
worker threads download the URLSs in parallel.

This example also illustrates a potential problem with PyDFlow functions
recursively calling each other: if a PyDFlow worker thread calls the function
fetch_split and blocks on the return value, we create the potential for a dead-
lock, given that there is a fixed number of worker threads.

In the initial implementation of PyDFlow deadlocks did occur if all the worker
threads were executing functions that then blocked on PyDFlow futures, as no
worker threads were able to make progress.

This was fixed by detecting when a worker thread attempts to block on a PyD-
Flow variable, and assigning that thread to evaluate the task’s dependencies. The
only downside to this approach is that if this happens recursively, the usage of the

Python stack continues to increase.
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SECTION 8
Extending PyDFlow with Python

Python offers additional language features that allow powerful and natural exten-
sions to facilitate parallel programming in PyDFlow. I present some examples
of the synergy between Python’s language features and the PyDFlow library to
illustrate the utility of PyDFlow.

8.1 Mappers

Swift [79] has a concept of a mapper as a primitive notion in a language. Sec-
tion 5.3.2 discusses how one important aspect of mapping - directly binding I-var
an I-var to an (opaque) storage location - is implemented in PyDFlow. Swift
provides a range of different mappers that bind one or more Swift variables in so-
phisticated ways [71]. For example, the st ructured_regexp_mapper (see
Figure 8.1) is essentially a function that takes an array of I-vars and performs a
textual transformation on the file paths using a regular expression to obtain a new
array of I-vars of the specified type bound to the transformed paths. The simple
mapper behaves somewhat differently: the mapper is instantiated with a Swift
variable type, and a file path prefix and a suffix such as foo and .txt. The
mapper can then be indexed with integers if the mapped variable is an array, or
named members if the mapped variable is a structure. File names corresponding
to the array index or structure member with matching prefixes and suffixes are
generated, as shown in Figure 8.1.

Many mappers can be implemented in PyDFlow as a function that takes a
number of arguments and returns a mapped I-var or array of I-vars. An example
of this is the SubMapper in Figure 8.2. This can be implemented in a straightfor-
ward manner as a Python function because its semantics mean that the complete
set of mapped files is known based on the arguments to the mapper. A simple im-
plementation of SubMapper could just return a standard Python list full of bound
I-vars, but we implemented a read only list primitive to ensure that the array is
write-once.

If mappings are performed after the mapping in instantiated, for example if

76



O O 00NN B W~

—_—

[o N B e R S

type type-a;
type type_-b;

string s[] = [ "a.txt”, 7b.txt”, "c.txt” ];
// array of files bound to above paths
type-a f[] <array_mapper;files=s>;

// array of files bound to to a.processed.txt, b.processed.txt, etc
type-b g[] <structured_-regexp-mapper; source=f, match="(.%)\.txt”,
transform="\1.processed. txt”>;

type messagefile;

type mystruct {
messagefile left;
messagefile right;

}s

app (messagefile t) greeting(string m) {
echo m stdout=@t;
}

messagefile outfile [] <simple_mapper;prefix="baz”,suffix=".txt”>;

outfile [0] = greeting (" hello”); // bound to baz0000. txt
outfile[1] = greeting (”goodbye”); // bound to baz000l. txt

mystruct out <simple_mapper;prefix="qux”,suffix=".txt">;

out.left = greeting ("hello”); // bound to quxleft.txt
out.right = greeting (”goodbye”); // bound to quxright.txt

Figure 8.1: Four different ways of using mappers to bind Swift variables to files
in Swift: array_mapper, structured_regexp_mapper simple_mapper with array in-
dexing and simple_mapper with named structure members. Some examples were
adapted from the Swift [79] documentation.
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# use the localfile constructor with map built—in function to emulate
array_mapper
first = map(localfile, [’a.txt’,’b.txt’,’c.txt’])

# use regular expression transformation to bind to to a.processed.txt, etc
second = SubMapper(localfile , source=first , match="(.%).txt’,
transform="\\1.processed.txt’)

messagefile = localfile.subtype ()

@app(messagefile , str)
def greeting (m):
return App(”echo”, m, stdout=outfiles[0])

# instantiate a mapper object

mp = SimpleMapper(messagefile, prefix="baz”, suffix=".txt”)
mp[0] << greeting ("hello”) # goes to baz0. txt

mp[l] << greeting (”goodbye”) # goes to bazl.txt

mp. left << greeting (”"hello left”) # goes to bazleft. txt
mp.right << greeting (”goodbye right”) # goes to bazright. txt

Figure 8.2: Equivalents to Swift mappers in Python. Python’s map primi-
tive can be used to emulate Swift array_mapper. SimpleMapper is similar to
Swift’s simple_mapper, except it is dynamically typed, so can support both in-
dexed and named members at the same time. SubMapper is similar to struc-
tured_regexp_mapper, as it transforms a list of inputs with a regular expression.

indexing a mapped array causes a new file to be mapped, then the mapper can
be implemented for PyDFlow as a class using Python’s flexible object model that
allows you to implement custom behavior when an object’s attributes are accessed,
when an object is indexed, or when an object is iterated over. An example of
this is the SimpleMapper shown in Figure 8.2, where bound variables are created

in response to accessing named members such as mp.left, or indices such as

mp[0].

8.2 Generators

Python has a language feature termed generators, which is a special variant of
a coroutine. It is commonly used to implement iterators: an abstraction where
elements of a collection can be requested one-by-one. It is particularly useful
when the data is stored externally and is large enough that it is undesirable to store
the entire data set in memory, or when dealing with large collections with elements

that can be computed on-the-fly. The first capability is commonly used in Python
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def cartesian(setl , set2):
for x in setl:
for y in set2:
yield (x, y)

for x, y in cartesian(xrange(1000), xrange(1000)):
print x, y

Figure 8.3: Python code to iterate through the cartesian product of two lists using
a generator.

database interfaces, where one wishes to iterate over the results of a database
query without realising the entire result set in memory at once. An example of the
second scenario is where one wishes to iterate over cartesian product of two sets.
Generating a list of all of the products in memory is clearly an inefficient use of
space, rather one wants to generate permutations incrementally. A generator can
be used to do this without exposing the details of managing the state, as shown in
Figure 8.3 below.

Generators provide a powerful tool that can be combined with PyDFlow to
allow clean specification of

One abstraction that we have implemented using generators is the resultset.
A common scenario that will occur is where we want to run a large number of
tasks in parallel, and process the results of these tasks. If the data from the task
execution is forwarded to another PyDFlow task, then that task will immediately
be able to start execution once the data is available. This is because the seman-
tics of the PyDFlow task graph are inherently parallel and data-driven. However,
consider the scenario where we wish to execute a list of independent tasks and
then perform some processing (maybe just printing the results) within the Python
interpreter. Suppose we just want to print a message to the screen to notify the
user when each data item is available.

The most straightforward solution is to spark all of the I-vars, and then simply
to call get on each I-var in sequence. However, there is no reason to assume that
data will become available in this order, so many notifications will be delayed. The
spark method on an I-var provides a way to register a callback function that will
be called when data appears in the I-var. We can take advantage of this feature

to achieve our aim, as illustrated in Figure 8.4 but dealing with asynchronous
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intfile = localfile.subtype()

@app((intfile), (intfile))
def sort(unsorted):
return App(’sort’, '—n’, unsorted, ’—o’, outfiles[0])

# Map all txt files in current directory
unsorted = GlobMapper(’ *.txt’)

# Create outputs
sorted_files = [intfile (’sorted-’ + file.get()) << sort(file)
for file in unsorted]

# A callback function which prints a message
def callback(done_file):
print done_file.get(), “is ready!’

# Print a message to the screen when each completes
for s in sorted_files:
s.spark(done_callback=callback)

# wait until everything completes, callbacks will occur asynchronously
waitall (sorted_files)

Figure 8.4: Python code using asynchronous callbacks to handle task completion.

intfile = localfile.subtype ()

@app((intfile), (intfile))
def sort(unsorted):
return App(’sort’, '—n’, unsorted, ’'—o’, outfiles[0])

# Map all txt files in current directory
unsorted = GlobMapper(’ *.txt’)

# Create outputs
sorted_files = [intfile (’sorted-’ + file.get()) << sort(file)
for file in unsorted]

# Print a message to the screen when each completes
for done_file in resultset(sorted_files):
print done_file.get(), “is ready!’

Figure 8.5: Python code using a resultset to handle task completion without call-
backs.
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callbacks adds an unnecessary level of complexity to the solution of a fairly simple
task.

The resultset abstraction takes advantage of generators to provide an iterator
interface that, given a set of I-vars (that may or may not have been forced), iter-
ators over the I-vars in the order in which they complete execution. Figure 8.5
illustrates how the resultset abstraction can be used to solve the same problem
without having to reason about asynchronous callbacks.

Note that we can also mix app and function types of tasks in order to achieve

the same effect, illustrating the power of the abstractions.
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SECTION 9

Conclusions and Future Work

9.1 Conclusion

I have surveyed some of the existing material on task parallelism and described a
system, PyDFlow, for expressing task parallel programs in the Python program-
ming language.

The utility of the library is evident from the examples provided: it can specify
in a concise and clear way task-parallel computations that are either parallel proce-
dure calls or external command line applications. Moreover, the PyDFlow model
permits the definition of new task types without modifying the core framework.

Embedding the system within an interpreted programming language is a severe
performance disadvantage for coordination code, but for many applications the
speed of execution of the coordination code is less relevant than the ability for the
coordination language to allow programmers to express parallel tasks that run on

a range of devices.

9.2 Future Work

e Distributed task graph execution: In the current system, the task graph
evaluation and tracking of dependencies is centralized in a single instance of
Python, which will eventually become a bottleneck as we try to scale up the
system to large number of tasks, or stress the system by running many short
tasks. We want to be able to partition the DAG across different processes (on
same computer or across a network), with processes on different machines
assuming responsibility for fragments of the task graph by stealing work.
We are partway there with the multi-threaded workstealing executor, but
the current implementation assumes that the task graph is stored in memory
shared between all worker threads. As well as methods for partitioning the
task graph, we would need a distributed protocol for tracking and resolving

data dependencies
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The ability to partition the task graph across multiple machines would also
permit the parallel evaluation of Python functions on a single multiprocessor
machine, getting around the GIL interpreter and allowing parallel execution

of pure Python code.

Fault-tolerance: The larger and longer running a parallel computation, the
higher the chance that a component of the system will fail. Future work will
involve implementing methods to recover from system component failure.
Failure of other components, such as the master Python interpreter or data
storage now leads to a failure of the entire execution. We would like to im-
plement recovery mechanisms that support the resumption of crashed jobs

and the recovery of lost data.

Fault tolerance combined with distributed task graph execution will present

further challenges.

More control flow functions: We want to support general control flow
within the task graph. For example, conditional statements must currently
be handled by serial Python code, by partially evaluating a PyDFlow graph,
inspecting the result in Python and then further extending the graph. It
would be more desirable if conditional statements could be handled within
the task graph, with branching decided based on data availability. This
would require that the task graph executor support both lazy and eager eval-
uation of the arguments of a control flow construct, as the condition of a

conditional statement must be evaluated before either branch.

Streaming data: It would be desirable to extend the task graph model to
support tasks can read and write from stream I-vars, enabling producer and

consumer tasks to be run in parallel to implement data processing pipelines.

These streams could be data streams passed between external tasks, like in
Dryad [41] or CIEL[57]. They could also be in-memory streams imple-

mented with Python generators.

Additional execution engines: Adding support for additional executors

and data formats would be desirable. For example, we could support a
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distributed execution engine like CIEL [57] or Coasters [79], or perhaps
distributed file systems like HDFS[78] or CIEL [57].

We could also support more exotic task types, such as GPU computation

kernels in CUDA using available Python bindings.
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