
Coasters: uniform resource provisioning and access for clouds and grids

Mihael Hategan
Computation Institute
University of Chicago

Chicago, IL USA
hategan@mcs.anl.gov

Justin Wozniak and Ketan Maheshwari
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL USA

{wozniak,ketan}@mcs.anl.gov

Abstract

In this paper we present the Coaster System. It is an
automatically-deployed node provisioning (Pilot Job) sys-
tem for grids, clouds, and ad-hoc desktop-computer net-
works supporting file staging, on-demand opportunistic
multi-node allocation, remote logging, and remote monitor-
ing.

The Coaster System has been previously [32] shown to
work at scales of thousands of cores. It has been used since
2009 for applications in fields that include biochemistry,
earth systems science, energy modeling, and neuroscience.

The system has been used successfully on the Open
Science Grid, the TeraGrid [1], supercomputers (IBM
Blue Gene/P [15], Cray XT and XE systems [5], and Sun
Constellation [26]), a number of smaller clusters, and three
cloud infrastructures (BioNimbus [2], Future Grid [20] and
Amazon EC2 [16]).

1. Introduction

Grid computing brought about the globalization of high
performance computing, characterized by the move from
custom local clusters to supercomputing centers accessible
openly by scientists through standardized interfaces [9, 28].
In recent years Cloud Computing has emerged with the
purpose of allowing users to deploy custom environments,
in particular custom operating systems through virtualiza-
tion [20]. A parallel development is the creation of sys-
tems capable of expressing and executing complex pro-
cess pipelines while opportunistically exploiting the new re-
sources [7, 32]. These, we argue, are part of a trend aimed at
commoditizing High Performance Computing with the pur-
pose of providing easier and more flexible computing so-
lutions for users. Nonetheless, shadows of the old systems
remain. Grid sites necessarily employ Batch Queuing Sys-
tems, optimized for monolithic jobs, and shared filesystems
which are required to enforce consistency of distributed and

concurrent file access, but not without performance costs.
On the other end, nodes on Computing Clouds do not, by
default, offer much in the way of job management or file
management. In this paper we analyze some of these issues
and present a system aimed at taming the conflict between
the desire for easy and efficient on-demand process pipeline
execution and the current Grid and Cloud infrastructure.

In Section 2 we provide a little background into the ori-
gins of the system. Section 3 contains a brief architectural
description. More detailed descriptions about the various
components involved are provided in Section 4. We pro-
vide some performance measurements in Section 5. Related
work is discussed in Section 7 and we conclude with possi-
ble paths for improvement in Section 8.

2. Motivation

Our initial motivation for the Coaster System (colloqui-
ally ”Coasters”) was prompted by the needs of the Swift
system [32]. Swift is a scripting language oriented to scien-
tific computing which can automatically parallelize the ex-
ecution of scripts and distribute tasks to various resources.
It is also a highly flexible, Turing complete language; as a
consequence, static analysis cannot in general be used to de-
termine whether a run will complete, how many jobs a run
consists of, or what the exact dependencies between those
jobs are. Apart from the trivial case when all the jobs in a
run are independent, dependencies between jobs mean that
a given resource on which a job executed can potentially be
re-used for other jobs. Even in the independent job case,
if fewer resources are available than what is needed to run
all jobs in parallel, some or all resources will need to be
re-used. On traditional cluster computers and clouds, and
without additional middleware, re-use of resources suffers
from non-proportionalities in job queuing times vs. job re-
quested wall times.

This is especially obvious with small (less than a few
minutes) wall time jobs. In other words, we observed that
the queuing time for a 10 minute job tends to be smaller than

ten times the queuing time for a one minute job. We believe
that this is too high of a price to pay for the difference be-
tween knowing one’s (future) workload with certainty and
a high confidence about the shape of that workload.

The challenges faced when scheduling jobs on a busy
system are illustrated in Figure 1. The graph shows the
measured queuing times for jobs of various requested wall
times. The results were obtained on TeraGrid’s TACC
Ranger system over a period of approximately 7 hours. This
shows that increasing the wall time request does not corre-
late with increasing queuing time.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400 450 500

Ti
m

e
 s

p
e
n
t

in
 q

u
e
u
e
 (

se
co

n
d

s)

Requested walltime (minutes)

Theil-Sen estimator: 0.01 * x + 282.52

Figure 1. Queuing times for a single job as a
function of walltime on Ranger

Although Swift [32] has been observed to benefit from
employing Coasters, the two are distinct in scope and can
be used independently. Specifically, Swift is used to de-
scribe the high level interconnects between application in-
vocations, while the Coaster System is a job execution en-
gine, with no knowledge of or ability to manage job depen-
dencies.

3. Architecture

The Coaster System was designed to meet both usability
and performance goals. In terms of usability, it was deemed
necessary to not require users to log into remote systems
and prepare services or configure compute nodes. After all,
when plugging a desk lamp into a power outlet, one is not
required to adjust knobs inside the power plant or make a
separate contract with the electricity provider before turning
the lamp on. In terms of performance, the system essentially
enables a live connection between client and compute node.
To take the lamp metaphor a bit further, one does not need
to carry batteries from the power plant home in order to
use the lamp, but a complex system of wires, transformers,
breakers and switches takes care of the transport.

A typical use of Coasters is diagrammed in Figure 2.
The Coaster System consists of a service (the Coaster Ser-

vice), which typically runs on a cluster head node, a Coaster
Client which provides an API used to establish a connec-
tion to and communicate with a service, and a Coaster
Worker component which runs on compute nodes and ex-
ecutes the actual jobs. The Coaster Client - Coaster Ser-
vice and Coaster Service - Coaster Worker communication
is done through a custom protocol that allows re-using a
single persistent connection between two given endpoints
in order to reduce overheads typically associated with con-
nection establishment. These overheads include the TCP
handshake (requiring a full round-trip), TCP buffers, and
the SSL session establishment (a processor intensive opera-
tion).

file a = compute(b, c);

Coaster Service

Swift

compilation

<execute task=”compute”> ...Karajan

socket

S
ub

m
it

si
te

R
em

o t
e

si
te

WorkerWorker Worker Worker

C
om

p u
te

si
te

s

sockets

Coaster Client

API

Figure 2. Coasters as used by Swift

The Coaster Service queues jobs and contains logic for
allocating compute nodes based on the characteristics of the
queued jobs. A number of providers available from the Java
CoG Kit Abstraction Library [31] (e.g. GRAM [6], WS-
GRAM, SSH [21], PBS [13], SGE [23], Cobalt [3], Con-
dor [17]) can be used to interact with the queuing system, ei-
ther directly or indirectly (as is the case of Globus GRAM).
The Coaster Service can also act as a proxy to allow client
file staging to happen even in cluster environments where
a compute node cannot directly connect to hosts outside of
the cluster.

4. Implementation

The bulk of the Coaster System is implemented in Java,
which allows the Coaster Service to be deployed automati-
cally on a various range of resources. The use of Perl for the
worker script enables us to maintain the ability to perform
automated deployment while still being able to run on clus-
ters with limited environments, such as the Argonne Blue
Gene/P.

4.1. Deployment

The Coaster Service is deployed automatically on tar-
get clusters. A bootstrap application is submitted to the
target cluster using one of the available remote providers
from Java CoG. In parallel, the Coaster Client starts a sim-
ple HTTP server. The bootstrap application then connects
to the Coaster Client and downloads the main Coaster Ser-
vice along with all its dependencies. The files that make
up the Coaster Service are checksummed and cached by the
bootstrap application. Subsequent deployments verify the
checksums of the files and downloads are skipped for files
that have not been modified.

We found that the automatic deployment provides some
advantages. First, it facilitates a fluid distributed environ-
ment. Updates to the service can be deployed expediently,
outside of the infrequent cycles characteristic of large grids.
Second, it gives the users the freedom to use and modify the
software as they see fit.

In an opinion article [25] Richard Stallman argued that
Software as a Service implies a loss of freedom with respect
to software, because a user of SaaS has no control over the
software that implements those services. While a distinc-
tion between Grid Services and SaaS may exist, the reality
of the lack of user control over the deployments of Grid
Services remains, despite the fact that the software and/or
protocols are open and/or open-sourced.

In addition to automatic deployment, the Coaster Service
can also be started manually, as a stand-alone service.

4.2. Communication Library

The Coaster System is implemented on top of a sim-
ple messaging library. At the logical level, the messag-
ing library provides communication channels between two
endpoints. Channels carry messages which are logically
grouped into conversations using tags. Conversations typi-
cally consist of commands and replies to commands, each
of which can have multiple parts. Any number of concur-
rent conversations can be active at a time on a channel,
which means that network latencies can be parallelized with
minimal resource consumption. The messaging library does
not specify a data format for the messages.

At the implementation level, channels can use plain TCP
sockets, GSI-wrapped SSL sockets, UDP messages, and in-
memory pipes (for channels whose endpoints live in the
same JVM). For connection oriented protocols (TCP and
GSI over TCP) a number of strategies can be used to estab-
lish and maintain connections.

4.3. Job Life-cycle

The Coaster Client provides an implementation of a Java
CoG Job Submission Provider. From a user’s perspec-

tive, this means that using Coasters can be nearly as sim-
ple as changing a string parameter from “GT2” to “coast-
ers”. When a job is submitted using the aforementioned
provider, the coaster implementation first looks to see if a
previously used Coaster Service exists for the target site. If
not, it uses the mechanism described in Section 4.1 to start
one. Once a Coaster Service is started on the target site,
the job is submitted to it. The Coaster Service maintains
an internal queue in which jobs are stored until they can be
executed on one of the compute nodes. A periodic worker
allocation mechanism, described in Section 4.5, determines
the count, walltime, and partitioning of Coaster Workers,
and subsequently submits them to the local resource man-
ager. After Coaster Workers are started, a fast submission
loop routes jobs to individual workers. Upon completion
of a job by a Coaster Worker, a notification is sent to the
Coaster Service, which in turn notifies the Coaster Client
of the job status.

4.4. File Staging and Clean-up

Traditionally, the Swift runtime model required the ex-
istence of a shared file system as a temporary storage for
application data between the client and the compute nodes.
This requirement proved to be problematic on larger clus-
ters, where shared file system load and contention caused
unnecessary delays. Swift provides a programming model
similar to a purely functional language, in which data is im-
mutable. The general requirement placed upon shared file
systems to enforce file level consistency in the face of dis-
tributed and concurrent reading and writing is both unnec-
essary for Swift’s immutable data model and unavoidable
in a typical cluster environment in which few universal high
level assertions can be made on the data access patterns.
In other words, one cannot temporarily disable the enforce-
ment of file level consistency even when it is known that
concurrent reads/writes will not occur. The issue becomes
particularly problematic with petascale computers, such as
the BG/P, where slowdowns can be significant even when a
file is only read from a large number of compute nodes.

The Coaster System supports file staging directly to and
from the compute node. A choice of mechanisms is avail-
able for reading and writing stage-in files and stage-out files
respectively. These mechanisms, pictured in Figure 3, are
as follows:

Proxy In proxy mode, files are accessed on the client side.
The Coaster Service, typically living on a login node,
acts as a proxy between the Coaster Worker and the
Coaster Client. This allows staging to be done even
if the compute nodes do not have direct access to the
world outside of a cluster. The actual file data is sent
using the coaster protocol.

Client

Local
Disk

Service Worker

Local
Disk

Client

Local
Disk

Service Worker

Local
Disk

Client

Local
Disk

Service Worker

Local
Disk

Shared
File System

Server

Proxy File Shared file system

Control

Data

Figure 3. The different I/O modes

File In file mode, files are assumed to be accessible on the
node on which the Coaster Service runs (typically a
login node). The Coaster Client is not involved in the
staging process. As in the proxy case, file data is sent
using the coaster protocol.

SFS Short for “shared file system”, it allows the Coaster
Worker to directly stage the data from/to a file system
that is accessible to the compute node. The file data is
copied using standard operating system mechanisms.

In addition to file staging, cleanup directives are also
supported. A flag, currently only accessible by modifying
code, controls whether cleanups are synchronous or not. In
synchronous mode, a job is marked as completed only af-
ter the cleanup completes. In asynchronous mode, a job
is marked as completed before the cleanup is performed,
which provides better performance when the job walltime is
comparable to the cleanup time, but can interfere with job
management systems that tightly control disk space usage.

4.5. Worker Allocation

In part, the worker allocation problem is roughly equiv-
alent to a (2-dimensional) box-packing problem in which
a multi-node Worker Block represents a box (with the num-
ber workers being one dimension and the walltime being the
other). Further constrains are imposed by the architecture of
the target cluster and by characteristics of the queuing sys-
tem. Relevant such constraints were identified as follows:

• There may be a limited number of jobs that can be sub-
mitted to the queuing system. This means that the sys-
tem must have the ability to start multiple workers in
one job (i.e., a Worker Block)

• The compute nodes may have multiple cores or the
cluster may require a certain number of nodes to be
allocated at one time (worker granularity).

• In order to provide any benefits from avoiding queu-
ing times, the walltimes of the worker jobs must be
larger than the actual job walltimes when the actual

job walltimes are comparable with the queuing times.
The amount of times the worker walltime is larger than
the actual job walltime is termed overallocation.

In addition, we identified a number of desirable charac-
teristics:

• The Worker Blocks should be allocated conservatively
in order to accommodate the possibility of future loads.

• If possible, the sizes (in CPU-hours) of the Worker
Blocks should be spread out in order to both find free
spots in the cluster queues (thus improving cluster uti-
lization) and optimize the job execution process.

By prioritizing the above constraints, the following algo-
rithm emerged (though no proof is provided and no claim is
made that this is the only reasonable algorithm given the
above constraints):

1. Iteratively process the queued jobs as follows:

1 Sort the jobs according to their walltimes

2 Determine the number of Worker Blocks to be
used by multiplying a fraction parameter (named
allocationStepSize) by the number of free Worker
Block slots (determined by subtracting the num-
ber of currently active Worker Blocks from the
site specific limit for the number of Worker
Blocks).

3 Compute the overallocation of each job. A num-
ber of choices may be available here. Given
that the overallocation is more important for
short jobs (with respect to typical queuing times)
and almost irrelevant for long jobs, we chose
an exponential decay model in which the user
specifies the overallocation for 1 second jobs
(lowOverallocation) as well as the overallocation
for infinitely long jobs (highOverallocation). In-
between, the overallocation is calculated as:

f(t) = (Ol −Oh)e−tβ + Oh

where Ol is the lowOverallocation, Oh is the
highOverallocation, and β is a decay rate param-
eter (overallocationDecayFactor).

4 Sum up all the over-allocated walltimes to get the
total CPU time required.

5 Partition the total CPU time required in a number
of blocks equal to the number of Worker Blocks
used in this round. The partitioning is done based
on a spread parameter. A zero spread indicates
that all blocks should have equal size, while a
spread of 1 indicates that the block sizes should
be linearly spread between the minimum possi-
ble size and the maximum possible size (subject
to the constraint that the sum of the block sizes is
equal to the total CPU time required).

6 Adjust the partitioned block size to fit the spec-
ified worker granularity as well as the overallo-
cated job walltimes.

2. Repeat

The Worker Block allocation algorithm requires a traver-
sal of the entire job queue: a O(n) operation in the number
of queued jobs. It is consequently unsuitable to re-run it for
every job that is added to the queue. In addition, the job
walltimes are, as usual, approximate, making any exact de-
termination of the Worker Block sizes difficult. Instead, the
algorithm above tries to make a “reasonable” allocation.

After a Worker Block allocation is done and the workers
are started, a fast dispatching algorithm distributes actual
jobs to workers. The dispatching algorithm iterates through
the available workers and for each worker selects the largest
possible job that can fit in the remaining run-time for the
worker. This solution is similar to the greedy solution to
the unbounded knapsack problem. This choice works un-
der the assumption that the entire workload consists of a
sufficiently large number of jobs of varied sizes. However,
as opposed to the standard knapsack problem, we have the
choice of adjusting the knapsack sizes by terminating the
Worker Block jobs early if it turns out that the workload is
lower than expected.

5. Performance

The primary performance metric in the Coaster System
is the ability of the system to run a large number of jobs
without reducing utilization. In the following subsection
we evaluate the system in various settings, with a focus on
multi-user cluster environments.

5.1 Submission Rate

A raw submission rate of 400 jobs/second can be
achieved even on modest networks, such as a DSL connec-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35

ti
m

e
 (

s)

of jobs

SSH
Coasters

Figure 4. Comparison of sequential job run
times between SSH and Coasters

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

ti
m

e
 (

s)

of jobs

SSH
Coasters

Figure 5. Comparison of parallel job run
times between SSH and Coasters

tion. Here, raw submission rate is defined as the time be-
tween right before the first job is submitted to the time right
after the last job is acknowledged as being submitted by the
server.

5.2 Serial Job Performance

A comparison of job completion rates between SSH and
Coasters without any queuing systems involved is shown in
Figure 4 for sequential no-op jobs and in Figure 5 for par-
allel no-op jobs. The times, in both cases, were measured
after an initial pre-load job was successfully completed. As
such, they do not include the one-time SSH authentication
overhead or, in the case of Coasters, the deployment and
connection overheads.

5.3 Application

In this section, we describe an application modFTDock,
ported to the Bionimbus cloud (www.bionimbus.org) using
the Coasters System. Bionimbus is an open source cloud-
based system for managing, analyzing and sharing genomic

data that has been developed by the Institute for Genomics
and Systems Biology (IGSB) at the University of Chicago.
The model of computation on the Bionimbus cloud is based
on Virtual Machines (VMs) provisioning. Users can cre-
ate an “image” of a VM which can be instantiated. Images
running the Linux OS with varying compute cores (1 to 4),
memory (3-15GB) are available. The data storage capaci-
ties are fixed to 10GB.

ModFTDock is a protein-RNA docking application. The
application is based on a molecular docking algorithm that
can identify protein molecules having a high structural
affinity towards a specific RNA molecule. A large repos-
itory of protein molecules are processed by the application
in a series of independent (hence parallel) docking opera-
tions. The resulting jobs are short. The distribution of run
times is shown in Figure 7. The distribution is close to a
normal distribution with a peak of over 17,500 jobs at 15
seconds of run time. The application is constructed as a
SwiftScript which integrates a large number of such invo-
cations in a loosely coupled manner.

Owing to this pattern of computation, a characteristic
large number of highly parallel tasks can be generated for
execution. Coasters were used to rapidly dispatch hundreds
of modFTDock tasks over the 20 nodes (20x4=80 cores) of
the Bionimbus Cloud resulting in the execution of 100,000
tasks in one run. A manual Coaster Service was run on the
Bionimbus Cloud head node. Coaster Workers were started
on the VMs and instructed to connect back to the service
via a reverse SSH tunnel in due to firewalls restricting the
root-only accessible TCP ports on VMs. This setup allowed
for 20 VMs to be up for the entire duration (4 hours) of the
experiment. The plot in figure 6 illustrates a rapid ramping
up of tasks and a sustained utilization of the 80 cores over a
time period of 200 minutes. This resulted in an average job
rate of 8.3 jobs per second.

Figure 7. Histogram of job run times for
ModFTDock on Bionimbus Cloud

6. Impact on Queuing Systems

An issue voiced on occasion by system administrators in
regards to similar systems is that they circumvent the queu-
ing system policies which are tailored for traditional jobs
with predictable number of nodes and wall times. We be-
lieve that, in fact, our system combined with the Many Task
Computing paradigm has the potential of improving overall
cluster utilization.

If backfilling is used, the ability of a queuing system to
utilize the unused “holes” in the schedule [19] depends on a
diverse spread of the queued jobs. If queued jobs consist ex-
clusively of large blocks on the processor/time space, such
holes are unavoidable. We reason that the ability to divide
one’s workload into small pieces which can then be flexibly
combined can provide such a diverse spread.

Actual run times are impossible to predict with certainty
in the general case, in part due to the undecidability of the
Halting Problem and in part due to variations in the load
of various cluster subsystems which affect job run times.
However, users need to specify an upper bound on the job
run times. User-supplied wall times are constrained by
the expectation that over-estimation will lead to increased
queue wait times and that under-estimation will lead to jobs
being killed. As mentioned in [29], seemingly conflicting
results have been obtained on the issue of the impact of
estimated job run time accuracy on cluster utilization. In
some studies inaccuracies lead to better results ([19, 33]),
while in others accurate predictions allow for better sched-
ules ([14, 11]).

Under the assumpion that user predicted job run times
are statistically proportional to the actual run time, a mono-
lithic job will tend to have, on average, a larger inaccuracy
than what is achievable when the monolithic job is broken
down into shorter pieces. This is because when dynamically
combining shorter jobs, the predicted run time inaccuracy is
limited to the inaccuracy of a single short job. The Coaster
System can essentially move jobs from one block to another
in order to follow the requested wall times as closely as the
short job advertised wall times permit. This, in turn, means
that more accurate wall time estimations are possible with
such a system. If a queuing system can benefit from more
accurate run time estimations, the scheduling flexibility of
the Coaster System can improve utilization. If, on the other
hand, better results are obtained by precise overestimations
of actual run time (as is suggested by [24]), then that can
be easily derived from an accurate prediction using a multi-
plicative factor.

7. Related Work

The development of grid standards and wide area net-
works drove the creation of systems designed to enable the

Figure 6. Plot showing a rapid ramp up and high sustained utilization of a Cloud resource through
Coasters for modFTDock tasks (RNA-RNA docking)

effective use of these computational resources. However,
enabling access to diverse, distant clusters does not nec-
essarily address the ease of use and seamlessness implied
by utility computing. Consequently, complex software sys-
tems were developed to make overall collections of com-
puting resource useful, by presenting a reliable, elastic ag-
gregate on a physical layer of varied and at times unreliable
resources.

The Java Commodity Grid (CoG) Kit [31] is an API
that provides a uniform interface to local and remote com-
putational resources and file systems. It enables the de-
velopment of portable Grid applications, but does not at-
tempt to create a more reliable view of the underlying re-
sources. A similar system, which is also an OGF standard,
is SAGA [12].

Process pipelines are described and executed using
“workflow systems”. These systems typically aggregate
multiple execution resources and allow jobs to be dy-
namically scheduled on them. Some workflow systems
implement automated fault tolerance mechanisms (e.g.,
Swift [32]), some rely on the underlying infrastructure
for fault tolerance (e.g., Chimera [8], Pegasus [7], DAG-
Man [28]), and others provide diverse user-specifieable
strategies for dealing with faults (e.g., Karajan [4]).

Pilot jobs are a well-established mechanism for distribut-
ing computation to a set of remote compute sites. In this
model, initial pilot jobs are distributed to the compute sites.
Each of these acts a compute service, and is available to
perform work for a centralized scheduler. Pilot job systems
were initially constructed for performance reasons; work
may be sent to a pilot job over a network much faster than
through the traditional system scheduler.

One of the first implementations of the Pilot Job idea
is the Condor [27] Glidein [10]. A Glidein is a daemon
process that can automatically download Condor binaries
to a compute node and advertise the node as a resource in
a Condor pool. Glideins can be configured to automatically
shut down after a certain idle time in order to avoid wasting

resources.
The DIRAC system [30] was developed with the goal of

handling large analysis tasks on data from the Large Hadron
Collider. DIRAC uses the XMPP messaging protocol and
has the ability to cache its various components when de-
ployed on computing resources. It supports different mech-
anisms for data transfer reliability.

The Falkon [22] system shows that impressive perfor-
mance can be achieved with a pilot job system in compari-
son to traditional execution mechanisms.

SAGA BigJob [18] is a Pilot Job system implemented
as a SAGA [12] adaptor and on top of SAGA adaptors, not
unlike Coasters and CoG providers.

8. Conclusion and Future Work

Pilot Job systems can dramatically improve the perfor-
mance of process pipelines with small job run times. The
Coaster System is one such implementation. We believe
that it goes further than similar systems by providing a zero-
install solution, advanced node management and I/O man-
agement, while achieving non-trivial performance and scal-
ability.

However, considerable work remains to be done. The
ability to easily run the Coaster Service on compute nodes
instead of cluster head nodes is necessary in order to avoid
overloading the cluster head nodes (and the subsequent an-
gry emails from the resource providers). The I/O subsystem
could employ caching to improve the performance of broad-
cast operations. Buffer copies when forwarding I/O data in
proxy mode should also be reduced. And last, but not least,
better diagnostic mechanisms should be provided for those
times when things simply do not go according to plan.

References

[1] P. H. Beckman. Building the TeraGrid. Philosophical Trans-
actions of the Royal Society, 363(1833), 2005.

[2] Bionimbus web site. http://www.bionimbus.org.
[3] Cobalt web site. http://trac.mcs.anl.gov/projects/cobalt.
[4] CoG workflow guide.

http://wiki.cogkit.org/wiki/Java CoG Kit Workflow Guide.
[5] Cray XE web site.

http://www.cray.com/Products/XE/CrayXE6System.aspx.
[6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-

tin, W. Smith, and S. Tuecke. A resource management archi-
tecture for metacomputing systems. Lecture Notes in Com-
puter Science, 1459, 1998.

[7] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gila,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,
A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: A framework
for mapping complex scientific workflows onto distributed
systems. Scientific Programming, 13, 2005.

[8] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera:
A virtual data system for representing, querying, and au-
tomating data derivation. In Proc. Scientific and Statistical
Database Management, 2002.

[9] I. T. Foster. Globus Toolkit Version 4: Software for Service-
Oriented Systems. Journal of Computer Science and Tech-
nology, 21(4):513–520, July 2006.

[10] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke.
Condor-g: A computation management agent for multi-
institutional grids. Cluster Computing, 5:237–246, July
2002.

[11] R. Gibbons. A historical application profiler for use by par-
allel schedulers. In In Job Scheduling Strategies for Parallel
Processing, pages 58–77. Springer Verlag, 1997.

[12] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer,
G. V. Laszewski, C. Lee, A. Merzky, H. Rajic, and J. Shalf.
SAGA: A Simple API for Grid Applications. High-level ap-
plication programming on the Grid. In Computational Meth-
ods in Science and Technology, page 2006.

[13] R. L. Henderson and D. Tweten. Portable batch system: Re-
quirement specification. Technical report, NAS Systems Di-
vision, NASA Ames Research Center, 1998.

[14] S. hui Chiang, A. Arpaci-dusseau, and M. K. Vernon. The
impact of more accurate requested runtimes on production
job scheduling performance. In In Job Scheduling Strate-
gies for Parallel Processing, pages 103–127. Springer Ver-
lag, 2002.

[15] IBM Blue Gene team. Overview of the IBM Blue Gene/P
project. IBM J. Research and Development, 52(1/2), 2008.

[16] A. Inc. Amazon Elastic Compute Cloud (Amazon EC2).
Amazon Inc., http://aws.amazon.com/ec2/#pricing, 2008.

[17] M. Litzkow, M. Livny, and M. Mutka. Condor - A hunter
of idle workstations. In Proc. International Conference of
Distributed Computing Systems, 1988.

[18] A. Luckow, L. Lacinski, and S. Jha. SAGA BigJob: An
extensible and interoperable pilot-job abstraction for dis-
tributed applications and systems. In Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, CCGRID ’10, pages 135–144,
Washington, DC, USA, 2010. IEEE Computer Society.

[19] A. W. Mu’alem and D. G. Feitelson. Utilization, predictabil-
ity, workloads, and user runtime estimates in scheduling the
ibm sp2 with backfilling. IEEE Trans. Parallel Distrib. Syst.,
12:529–543, June 2001.

[20] NSF. Award abstract #091081 - FutureGrid: An experimen-
tal, high-performance grid test-bed, 2009.

[21] OpenSSH web site. http://www.openssh.com.
[22] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde.

Falkon: A Fast and Light-weight tasK executiON frame-
work. In Proc SC’07, 2007.

[23] Sun Grid Engine web site. http://gridengine.sunsource.net.
[24] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayap-

pan. Selective reservation strategies for backfill job schedul-
ing. In D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
editors, Job Scheduling Strategies for Parallel Processing,
volume 2537 of Lecture Notes in Computer Science, pages
55–71. Springer Berlin / Heidelberg, 2002.

[25] R. M. Stallman. What does that server really serve? Boston
Review, 2010.

[26] Sun Constellation system.
http://en.wikipedia.org/wiki/Sun Constellation System.

[27] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor
– a distributed job scheduler. In T. Sterling, editor, Beowulf
Cluster Computing with Linux. MIT Press, October 2001.

[28] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: The Condor experience. Concurrency
and Computation: Practice and Experience, 17(2-4), 2005.

[29] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Modeling user
runtime estimates. In In 11th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP 2005, pages 1–35.
Springer-Verlag, 2005.

[30] A. Tsaregorodtsev, V. Garonne, and I. Stokes-Rees. DIRAC:
A scalable lightweight architecture for high throughput com-
puting. In Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, GRID ’04, pages 19–25,
Washington, DC, USA, 2004. IEEE Computer Society.

[31] G. von Laszewski, J. Gawor, P. Lane, N. Rehn, M. Russell,
and K. Jackson. Features of the Java Commodity Grid Kit.
Concurrency and Computation: Practice and Experience,
14(13-15), 2002.

[32] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S.
Katz, and I. Foster. Swift: A language for distributed parallel
scripting. Parallel Computing, In Press, published online,
2011.

[33] D. Zotkin and P. J. Keleher. Job-length estimation and per-
formance in backfilling schedulers. In Proceedings of the
8th IEEE International Symposium on High Performance
Distributed Computing, HPDC ’99, pages 39–, Washington,
DC, USA, 1999. IEEE Computer Society.

