
Enabling Multi-task computation on Galaxy-based
Gateways using Swift

Ketan Maheshwari∗, Alex Rodriguez†, David Kelly∗†, Ravi Madduri∗†,
Justin Wozniak∗†, Michael Wilde∗†, Ian Foster∗†

∗MCS Division, Argonne National Laboratory, Argonne, IL 60439
†Computation Institute, University of Chicago & Argonne National Laboratory

Abstract—The Galaxy science portal is a popular gateway to data
analysis and computational tools for a broad range of life sci-
ences communities. While Galaxy enables users to overcome the
complexities of integrating diverse tools into unified workflows,
it has only limited capabilities to execute those tools on the
parallel and often distributed high-performance resources that
the life sciences fields increasingly requires. We outline here an
approach to meet this pressing requirement with the Swift parallel
scripting language and its distributed runtime system. Swift’s
model of computation – implicitly parallel functional dataflow –
is an elemental abstraction to which the core computing model
of Galaxy maps very closely. We describe an integration between
Galaxy and Swift that is transforming Galaxy into a much more
powerful science gateway, retaining its user-friendly nature while
extending its power to execute highly scalable workflows on
diverse parallel environments.

Science gateways have high potential to accelerate productive
computations for science. They support users by allowing
them to perform computations via tools, workflows and data
with little managerial overheads from a simplified and unified
environment such as a web browser. The Galaxy [2] gateway is
one such popular environment used, supported and developed
by a large life sciences users community. Galaxy effectively
handles many of the challenges faced by computational sci-
entists by providing ready-to-use, interactive environment for
data analysis, management and computational operations.

Swift [5] is a parallel scripting language specifically created to
execute multiple instances of ordinary programs concurrently
on diverse parallel and distributed resources. Swift is a pow-
erful programming model for expressing and orchestrating the
kinds of workflows that Galaxy users create. Swift specializes
in rapidly creating complex application flows and readily
executing them with a diverse range of remote computation
systems. Arbitrary highly-concurrent workflow patterns can be
composed via Swift script’s set of programming constructs.

Swift offers a scripting language which enables expression of a
parallel and distributed execution environment with capabilities
to encode arbitrary computations into workflows and run on
multiple remote environments via a standard Linux command-
line. Compact, C-like Swift scripts provide powerful semantics
to extract non-obvious concurrencies from complex application
flows.

Within the familiar abstraction of the Linux (POSIX) envi-
ronment, concise Swift scripts can result in rapid prototyping
at a small scale and a large-scale execution without loss of
computational logic expressed in the script. It transparently
performs data movement and supports a wide variety of
resource managers, distributed middleware and data transport

services.

In this paper we describe our work in progress to integrate
the Swift and Galaxy gateways. This effort is producing a
powerful platform with access to a broader community and
significantly more computational resources. We view the result
of this integration as an environment which will enable and
support parallel and distributed computations while providing
the same portable, user-friendly and simplistic experience to
end-users. We describe a set of integration levels and our
experience implementing and using them. We report on the
current developments and future paths for a science gateway
leading to an environment which is expected to benefit the
broad Galaxy user-base and apply well to many similar portals
and gateways. Our experience to date shows that such a
gateway will enable user communities to readily leverage
distributed parallel resources without changing the model of
workflow execution and provenance tracking that has made
Galaxy so productive for them.

I. MOTIVATION

In this section we describe the motivation behind our con-
cept of adding implicitly parallel and transparently distributed
workflow to Galaxy, and discuss the expected benefits of the
integration of Swift into Galaxy gateways.

The general notion of science gateways includes web-based
portals or web-oriented access as an integral part of user’s
interaction and experience. While simple and easy to adapt, a
web interface can often be restricted in the ways operations
can be performed over it. This can be considered a conscious
design trade-off to lower the adoption barrier and avoid steep
learning curves for non-programming user communities.

While being simple in user interactions and processing opera-
tions Galaxy currently has limited capabilities with respect to
interfacing with large scale computational systems and running
workflows and tools in a parallel and distributed manner. With
respect to execution, Galaxy workflows are limited to either
single machine multi-threaded systems or are interfaced to
limited large-scale systems via an ad-hoc LRM/DRM (Lo-
cal/Distributed Resource Manager) interface such as PBS, SGE
and Condor pool. To the best of our knowledge the Galaxy
DRM capabilities are limited to a single environment with
local shared file system requirements.

Galaxy allows users to manage their data, tools and work-
flows in an easily accessible web-based environment. Galaxy
provides server space for users to store the ‘histories’ of their



computations. The interface allows easy management of such
histories.

However, scientific users often need more control over how
and where their computations should be executed. A standard
text-based Swift-enabled scientific gateway could be thought of
as a powerful and flexible access point to a broader variety of
computational resources for scientific tools and libraries. Such
a gateway will have all the necessary tools implemented in the
form of commands and command-line parameters executable
from a standard Linux terminal.

These capabilities when done well will provide the power of
running large scale analyses in parallel with the flexibility
of the web-based portal environments so that the end user,
researcher does not have to become an IT expert in order to
perform science at a larger scale.

Some of the distinct benefits of such an environment will be
as follows:

• An ability to steer computations to multiple, indepen-
dent resources.

• An ability to add new resources to the deployment
profile of existing workflow.

• An ability to run a particular analysis through a set of
files or running a set of analyses in parallel.

Swift users who are already familiar with the Swift execution
framework will be able to better manage their computations
and results via Galaxy interface. Galaxy users will benefit from
Swift’s capabilities of interfacing with a broader computational
systems. A generic Swift execution tool running arbitrary
Swift scripts from within Galaxy interface will allow test and
prototyping. Static application tools for special purpose exe-
cution with flexibility of user provided application parameters,
execution sites will let users experiment with their allocations.

II. SWIFT-GALAXY INTEGRATION

Swift and Galaxy workflows can interoperate because of their
similar model of basic interactions with external systems. Both
operates on executables by invoking them via operating system
utilities. The overarching goal of integration is to enable an
environment by combining the strengths of each system. We
aim to achieve this with minimal invasion and modification on
either of the systems. The basic mechanism we employ is to
use Swift as internal, low-level execution engine while Galaxy
as the higher-level, external, user-visible framework.

Fig. 1. Swift acting as an interface between locally installed Galaxy tools
and remotely located resources

Figure 1 shows a general theme of Swift’s role in connecting
Galaxy to a wide range of scientific tools and resources. Under

this scheme, we are developing modalities through which a
variety of Swift enabled tools can be readily used as Galaxy
tools. Galaxy tool is executed as Swift script using Swift-
enabled scientific tools and libraries.

In the rest of this section we describe our experience with the
development concerning the integration of Swift and Galaxy
gateways. We develop different ‘schemes’ of integration and
discuss benefits of each.

Fig. 2. Swift-Galaxy integration view: Custom Swift wrapped galaxy tools
use swift runner

The basic working unit in Galaxy is a “tool”. Tools run as
custom execution units for existing program interpreters or
“runners” such as shell, perl and python. As a first integration
scheme, we developed a generic tool with a capability of exe-
cution of user provided arbitrary Swift scripts. The tool is set
up such that user can select various configuration parameters
from available choices. This allows users to provide arbitrary
parameters specific to the application and the execution specific
parameters such as target computational site.

Shown in figure 2 is a user’s view of Galaxy interface with
preset, static Swift wrapped tools that are available for use
individually or as part of workflows. In addition to tool’s
own configurable properties, Swift specific properties allow
users to chose on which remote resource to run the tool with
custom configuration such as desired degree of parallelism, job
distribution among sites and so on. With this scheme users can
run individual tools as Swift scripts as well as can stitch tools
together running a workflow made up of other Galaxy tools
and Swift tools.

Fig. 3. Interoperability between Galaxy workflows to Swift scripts

Figure 3 shows a scheme where predefined Galaxy workflows
are transliterated into Swift scripts via a post-processing script.
This development will enable interoperability between the
two gateways. Galaxy workflows are currently expressed as
JSON [1] documents linking the Galaxy tools which are
expressed as XML documents. Swift scripts are C-like expres-
sions which are translated into an XML syntax by the Swift
compiler. This poses an opportunity to translate and express
Galaxy workflows as Swift representation and vice versa. A
two-way translator will enable the workflows expressed in
either formats thus being able to run under two environments.

Complex workflows with a large number of tasks often lose
visual appeal and can be hard to understand. A readable and
searchable textual representation aids well in understanding the
flows and links of a complex multistage computation.



Fig. 4. Swift wrapper to Galaxy tool splitting data, running the tool under a
swift foreach and merging the results

Figure 4 shows a scheme of running Galaxy tools wrapped
into a Swift foreach parallel loop. The scheme enables
running ordinary sequential tools that perform homogeneous
processing on large dataset to run in parallel on a split dataset.
The results of individual operations then get merged into a
final result from the tool and emerge as output for consumption
downstream. The scheme resembles the popular MapReduce
computational paradigm. The implementation of this scheme
is straightforward thanks to Swift’s indexed arrays that map to
files. The splits and merge on data can be organized into arrays
that map to file fragments and can be processed in the Swift
script as variables. One requirement however for this tool to
be successfully applied would be that the operations on split
data are associative of each other.

III. DATA MANAGEMENT

Most application life cycles begin with raw and unprocessed
data and end with processed data in the form of results. Data
management is often the central part of automated systems.
Both Galaxy and Swift offers various advantages to its users
with respect to data management. Swift allows expressing disc
resident or remote data directly into scripts and operate upon
it like program variables. Swift implements the notion of data
providers which are interfaced with various data movement
protocols and can manage data motions at runtime without
manual intervention.

Galaxy provides a user-friendly way of managing data and
results. A user can import external data into Galaxy’s per-
sistent dataset system and operate upon it for computations.
Galaxy’s engine supports multiple custom data types and
formats and can recognize them for operations, storage and
display purposes. Additionally Galaxy supports data transfer
protocols such as FTP and HTTP. Swift’s data providers handle
data movement via TCP sockets and managed APIs such as
GridFTP and a support of GO is under development.

IV. INTERFACE TO COMPUTATIONAL INFRASTRUCTURES

Swift framework implements ‘providers’ suitable to interface
with a wide variety of computational systems. HPC systems
such as supercomputers have customized and optimized im-
plementation of LRM/DRM. These systems employ schedulers
and middleware in order to access the computational resources.
Additionally, accessing the systems involves different modes
often dictated by administrative policies of the system. Some
are accessed from local head nodes directly while the others
are accessed via remote machines using ssh based connections.
Furthermore, there are general purpose clusters, clouds and
bag of workstations which are accessed directly via machine
addressing. These heterogeneous modalities results in com-
plex resource access patterns. Swift’s providers implements

codes that handle these modalities for LRM/DRM, clusters
and cloud-based systems simultaneously. Swift’s pilot job
implementation–coasters [3] can efficiently manage resource
queues and schedule a group of tasks via jobs submitted as
pilot agents.

Both Galaxy and Swift use cloud resources as one of their
execution platforms. Clouds have played a crucial role in recent
advancement of Galaxy usage. Galaxy offers Cloud managers
in order to configure user-owned Galaxy server and run both
the server and computations on cloud resources. This results
in more user control and less load on the main Galaxy server.
Swift’s coaster execution providers have been shown to be
useful cloud execution providers [4]. A cloud based Galaxy
environment thus naturally suits Swift driven executions.

Swift provides structured and managed interfaces to such sys-
tems exposing configurable properties to users. The integration
of Swift and Galaxy thus enables an aggregation of support for
these clusters into Galaxy environment. As a result making use
of these resources at large-scale a turnkey solution.

V. CONCLUSIONS AND FUTURE WORK

In this paper we describe the benefits of an integration of
portal-based execution frameworks with a large-scale parallel
programming framework. We demonstrate the integration with
Galaxy as a representative of the former and Swift that of
the latter. Such an integration will bring together an existing
community of each of the platforms and will provide a turn-
key solutions to usage and adaptation to distributed computing
resources.

A deeper Swift-Galaxy interoperability effort is underway
which will result in a robust translation implementation in the
future. We are exploring possibilities for data interoperability
between the two platforms via extension of Swift features (e.g.
variable to file mappers) that will integrate with Galaxy dataset.
The result will be a capability of operating upon Galaxy data
by Swift’s providers.

VI. ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, under Contract DE-AC02-06CH11357.

REFERENCES

[1] D. Crockford. RFC 4627: The application/json media type for JavaScript
Object Notation (JSON). 2006.

[2] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, et al. Galaxy: a
platform for interactive large-scale genome analysis. Genome research,
15(10):1451–1455, 2005.

[3] M. Hategan, J. Wozniak, and K. Maheshwari. Coasters: uniform resource
provisioning and access for scientific computing on clouds and grids. In
Proc. Utility and Cloud Computing, 2011.

[4] K. Maheshwari, K. Birman, J. Wozniak, and D. V. Zandt. Evaluating
cloud computing techniques for smart power grid design using parallel
scripting. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on, 2013.

[5] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster. Swift: A language for distributed parallel scripting. Par. Comp.,
37:633–652, 2011.


