
Falkon: a Fast and Light-weight tasK executiON framework

Ioan Raicu*, Yong Zhao*, Catalin Dumitrescu*, Ian Foster#*+, Mike Wilde#+

{iraicu,yongzh,catalind}@cs.uchicago.edu, {foster,wilde}@mcs.anl.gov
*Department of Computer Science, University of Chicago, IL, USA

+Computation Institute, University of Chicago & Argonne National Laboratory, USA
#Math & Computer Science Division, Argonne National Laboratory, Argonne IL, USA

Abstract
To enable the rapid execution of many tasks on
compute clusters, we have developed Falkon, a Fast
and Light-weight tasK executiON framework. Falkon
uses (1) multi-level scheduling to separate resource
acquisition (via, e.g., requests to batch schedulers)
from task dispatch, and (2) a streamlined dispatcher.
Multi-level scheduling, introduced in operating
systems research in the 1990s, has been applied to
clusters by the Condor team and others, while
streamlined dispatchers are found in, e.g, BOINC.
Falkon’s integration of the techniques delivers
performance not provided by any other system. We
describe Falkon architecture and implementation, and
present performance results for both microbenchmarks
and applications. Microbenchmarks show that Falkon
throughput (440 tasks/sec) and scalability (to 54,000
executors and 2,000,000 tasks processed in just over
two hours) are one to two orders of magnitude better
than other schedulers. Applications (executed by the
Swift parallel programming system) reduce end-to-end
run time of up to 90% for large-scale astronomy and
medical applications, relative to versions that execute
tasks via separate scheduler submissions.

Keywords: parallel programming, dynamic resource
provisioning, scheduling, Grid computing

1 Introduction
Many interesting computations can be expressed
conveniently as data-driven task graphs, in which
individual tasks wait for input to be available, perform
computation, and produce output. Systems such as
DAGMan [1], Karajan [2], Swift [3], and VDS [4]
support this model. These systems have all been used
to encode and execute thousands of individual tasks.

In such task graphs, as well as in the popular master-
worker model [5], many tasks may be logically
executable at once. Such tasks may be dispatched to a
parallel compute cluster or (via the use of grid
protocols [6]) to many such clusters. The batch
schedulers used to manage such clusters receive
individual tasks, dispatch them to idle processors, and
notify clients when execution is complete.

This strategy of dispatching tasks directly to batch
schedulers has two disadvantages. First, because a
typical batch scheduler provides rich functionality
(e.g., multiple queues, flexible task dispatch policies,
accounting, per-task resource limits), the time required
to dispatch a task can be large—30 secs or more—and
the aggregate throughput relatively low (perhaps two
tasks/sec). Second, while batch schedulers may support
different queues and policies, the policies implemented
in a particular instantiation may not be optimized for
many tasks. For example, a scheduler may allow only a
modest number of concurrent submissions for a single
user. These factors can cause problems when dealing
with many tasks.

One solution to this problem is to transform
applications (manually or automatically) to reduce the
number of tasks. However, such transformations can be
complex and/or may place a burden on the user.
Another approach is to employ multi-level scheduling
[7, 8]. A first-level request to a batch scheduler
allocates resources to which a second-level scheduler
dispatches tasks. The second-level scheduler can
implement specialized support for task graph
applications. Frey et al. [9] and Singh et al. [10] create
an embedded Condor pool by “gliding in” Condor
workers to a compute cluster, while MyCluster [11] can
embed both Condor pools and SGE clusters. Singh et
al. [12, 13] report 50% reductions in execution time
relative to a single-level approach.

We seek to achieve further improvements by:

• Reducing task dispatch time by using a streamlined
dispatcher that eliminates support for features such
as multiple queues, priorities, accounting, etc.

• Using an adaptive provisioner to acquire and/or
release resources as application demand varies.

To explore these ideas, we have developed Falkon, a
Fast and Light-weight tasK executiON framework.
Falkon incorporates a lightweight task dispatcher, to
receive, enqueue, and dispatch tasks; a simple task
executor, to receive and execute tasks; and a
provisioner, to allocate and deallocate executors.

Microbenchmarks show that Falkon can process
millions of task requests and scale to over 50,000
executor nodes. A synthetic application demonstrates
the benefits of adaptive provisioning. Finally, results
for two applications involving many small tasks
demonstrate that substantial speedups can be achieved
for real scientific applications.

2 Related Work
Full-featured local resource managers (LRMs) such as
Condor [1], Condor-J2 [15], PBS [16], LSF [17] support
client specification of resource requirements, data
staging, process migration, dynamic load balancing,
check-pointing, accounting, and daemon fault
recovery. Falkon, in contrast, is not a full-featured
LRM: it focuses solely on efficient task dispatch and
thus can omit these features to streamline task
submission. This narrow focus is possible because
Falkon can rely on LRMs for certain functions (e.g.,
accounting) and clients for others (e.g., recovery).

The BOINC “volunteer computing” system [19, 20] has
a similar architecture to that of Falkon. BOINC’s
database-driven task dispatcher is estimated to be
capable of dispatching 8.8M tasks per day to 400K
workers. This estimate is based on extrapolating from
smaller synthetic benchmarks of CPU and I/O
overhead, on the task distributor only, for the execution
of 100K tasks. By comparison, Falkon has been
measured to execute 2M artificial tasks in two hours
using the actual Falkon code, and has scaled to 54K
managed executors with similarly high throughput.
This test as well as other throughput tests achieving
440 tasks/sec suggest that Falkon can provide higher
throughput than BOINC.

Multi-level scheduling has been applied at the OS level
[27, 30] to provide faster scheduling for groups of
tasks for a specific user or purpose by employing an
overlay that does lightweight scheduling within a
heavier-weight container of resources: e.g., threads
within a process or pre-allocated thread group.

Frey and his colleagues pioneered the application of
this principle to clusters via their work on Condor
“glide-ins” [9]. Requests to a batch scheduler
(submitted, for example, via Globus GRAM) create
Condor “startd” processes, which then register with a
Condor resource manager that runs independently of
the batch scheduler. Others have also used this
technique. For example, Mehta et al. [13] embed a
Condor pool in a batch-scheduled cluster, while
MyCluster [11] creates “personal clusters” running
Condor or SGE. Such “virtual clusters” can dedicated
to a single workload; thus, Singh et al. find, in a
simulation study [12], a reduction of about 50% in

completion time. However, because they rely on
heavyweight schedulers to dispatch work to the virtual
cluster, the per-task dispatch time remains high.

In a different space, Bresnahan et al. [25] describe a
multi-level scheduling architecture specialized for the
dynamic allocation of compute cluster bandwidth. A
modified Globus GridFTP server varies the number of
GridFTP data movers as server load changes.

Appleby et al. [23] were one of several groups to
explore dynamic resource provisioning within a data
center. Ramakrishnan et al. [24] also address adaptive
resource provisioning with a focus primarily on
resource sharing and container level resource
management.

In summary, Falkon’s innovation is its combination of
a fast lightweight scheduling overlay on top of virtual
clusters with the use of standard grid protocols for
adaptive resource allocation. This combination of
techniques allows us to achieve higher task throughput
than previous systems, while also offering applications
the ability to trade-off system responsiveness, resource
utilization, and execution efficiency.

3 Architecture and Implementation

3.1 Execution Model
Each task is dispatched to a computational resource,
selected according to the dispatch policy. If a response
is not received after a time determined by the replay
policy, or a failed response is received, the task is re-
dispatched according to the dispatch policy. The
resource acquisition policy determines when and for
how long to acquire new resources, and how many
resources to acquire. The resource release policy
determines when to release resources.

Dispatch policy. We consider here only the next-
available policy, which dispatches each task to the next
available resource. We assumed that all data needed by
a task is available in a shared file system. In the future,
we will examine other dispatch policies that take into
account data availability.

Resource Acquisition Policy. This policy determines
the number of resources, n, to acquire; the length of
time for which resources should be requested; and the
request(s) to generate to LRM(s) to acquire those
resources. We have implemented five strategies that
variously generate a single request for n resources;
generate n requests for a single resource; generate a
series of arithmetically or exponentially larger
requests; or use system functions to determine
available resources. In the experiments reported in this

paper, we considered only first (“all-at-once strategy”)
due to space restrictions.

Resource Release Policy. We distinguish between
centralized and distributed resource release policies. In
a centralized policy, decisions are made based on state
information available at a central location. For
example: “if there are no tasks to process, release all
resources,” and “if the number of queued tasks is less
than q, release a resource.” In a distributed policy,
decisions are made at individual resources based on
state information available at the resource. For
example: “if the resource has been idle for time t, the
acquired resource should release itself.” Note that
resource acquisition and release policies are typically
not independent: in most batch schedulers, one must
release all resources obtained in a single request at
once. In the experiments reported in this paper, we
used a distributed policy, releasing resources after a
specified idle time.

3.2 Architecture
Falkon consists of a dispatcher, a provisioner, and zero
or more executors (Figure 1). The dispatcher accepts
tasks from clients and implements the dispatch policy.
The provisioner implements the resource acquisition
policy. Executors run tasks received from the
dispatcher. Components communicate via Web
Services (WS) messages, except for notifications are
performed via a custom TCP-based protocol.

Figure 1: Falkon architecture overview

The dispatcher implements the factory/instance
pattern, providing a create instance operation to allow
a clean separation among different clients. To access
the dispatcher, a client first requests creation of a new
instance, for which is returned a unique endpoint
reference (EPR). The client then uses that EPR to
submit tasks, monitor progress, retrieve results, and
(finally) destroy the instance. Each instance can be
thought of as a separate instantiation of the dispatcher,
maintaining its own task queue and related state.

A client “submit” request takes an array of tasks, each
with working directory, command to execute,

arguments, and environment variables. It returns an
array of outputs, each with the task that was run, its
return code , and optional output strings (STDOUT and
STDERR contents). Each instance contains its own
work queue. A shared notification engine is used to
notify executors that work is available for pick up. This
engine maintains a queue on which a pool of threads
operate to send out notifications. The GT4 container
also has a pool of threads that handle WS messages.
Profiling shows that most dispatcher time is spent
communicating (WS calls, notifications). Increasing
the number of threads should allow the service to scale
on newer multicore and multiprocessor systems.

The dispatcher runs within a Globus Toolkit 4 (GT4)
[28] WS container, which provides authentication,
message integrity, and message encryption
mechanisms, via transport-level, conversation-level, or
message-level security [29].

The provisioner is responsible for creating and
destroying executors. It is initialized by the dispatcher
with information about the state to be monitored and
how to access it; the rule(s) under which the
provisioner should create/destroy executors; the
location of the executor code; bounds on the number of
executors to be created; bounds on the time for which
executors should be created; and the allowed idle time
before executors are destroyed.

The provisioner periodically monitors dispatcher state
and, based on the supplied rules, determines whether to
create additional executors, and if so, how many, and
for how long. Creation requests are issued via GRAM4
[27], to abstract away LRM details.

A new executor registers with the dispatcher. Work is
then supplied as follows: (1) the dispatcher notifies the
executor when work is available; (2) the executor
requests work; (3) the dispatcher returns the task(s); (4)
the executor executes the supplied task(s) and returns
results, including return code and optional standard
output/error strings; and (5) the dispatcher
acknowledges delivery.

3.3 Performance Enhancements
Communication costs can be reduced by task bundling
between client and dispatcher and/or dispatcher and
executors. In the latter case, problems can arise if task
sizes vary and one executor gets assigned many large
tasks, although that problem can be addressed by
having clients assign each task an estimated runtime.
We use client-dispatcher bundling in experiments
described below, but (lacking runtime estimates) not
dispatcher-executor bundling. Another technique that
can reduce message exchanges is to piggy-back new

task dispatches when acknowledging result delivery
(step 5 above).

Using both task bundling and piggy-backing, we can
reduce the average number of message exchanges per
task to be arbitrarily close to zero, by increasing the
bundle size. In practice, we find that performance
degrades for bundle sizes of greater than 300 tasks (see
Section 4.2)—and, as noted above, bundling cannot
always be used between dispatcher and executors.

With client-dispatcher bundling and piggy-backing
alone, we can reduce the number of messages to three
per task (one message from executor to dispatcher to
deliver a result, one associated response from
dispatcher to executor to acknowledge receipt and
provide a new task, and one notification of task
completion from dispatcher to client)—or five, if the
clients needs to fetch task output after notification.

3.4 Ease of Use
We modified the Swift parallel programming system to
use Falkon for task dispatch. The “Falkon provider”
consisted of 840 lines of Java code, and took less than
a day to implement. Code size is comparable to that of
the GRAM2 provider (850 lines), GRAM4 provider
(517 lines), and Condor provider (575 lines).

4 Performance Evaluation
Table 1 lists the platforms used in experiments. The
latency between these machines was one to two
millisecs. We assume a one-to-one mapping between
executors and processors in all experiments.

Table 1: Platform descriptions
Name # of Nodes Processors Memory Network

TG_ANL_IA32 98
Dual Xeon

2.4GHz 4GB 1Gb/s

TG_ANL_IA64 64
Dual Itanium

1.5GHz 4GB 1Gb/s

TP_UC_x64 122
Dual Opteron

2.2GHz 4GB 1Gb/s

UC_x64 1
Dual Xeon

3GHz w/ HT 2GB 100 Mb/s

UC_IA32 1
Intel P4
2.4GHz 1GB 100 Mb/s

4.1 Throughput
To determine maximum throughput, we measured
performance running “sleep 0.” We ran executors on
TG_ANL_IA32 and TG_ANL_IA32, the dispatcher on
UC_x64, and the client generating the workload on
TP_UC_x64. As each machine had two processors, we
ran two executors on each machine. We measured
Falkon’s throughput for dispatching and executing
short tasks both without any security, and with

authentication and encryption. We enable two
optimizations discussed below, namely client-
dispatcher bundling and piggy-backing. However,
every task is transmitted individually from dispatcher
to an executor, as is each notification of success or
failure from dispatcher to client.

For purposes of comparison, we also tested GT4’s
performance with all security disabled. We created a
simple service that incremented a counter for each WS
call made to a counter service, and measured the
number of WS calls per second that could be achieved
from a varying number of machines.

Figure 2 shows results. The GT4 performance (500
messages/sec) is an upper bound on what Falkon can
achieve on the given hardware, given that (in the
absence of optimizations discussed below) every
Falkon task requires at least one WS message and one
notification. Performance reaches between 180 and 440
tasks/sec depending on security. These results compare
favorably to other existing systems such as Condor
(~2/sec) [15], Condor-J2 (~22/sec) [15], and Boinc
(~93/sec) [19, 20]. A single Falkon executor can handle
between seven and 28 tasks/sec depending on security
level.

0

100

200

300

400

500

600

0 50 100 150 200 250 300
Number of Executors

Th
ro

ug
hp

ut
 (p

er
 s

ec
on

d)

WS Calls (no security)
Falkon (no security)
Falkon (GSISecureConversation: Authentication + Encryption)

Figure 2: Throughput as function of executor count

4.2 Bundling
We measured performance for a workload of “sleep 0”
tasks as a function of task bundle size. We see that
performance increases from about 20 tasks/sec without
bundling to a peak of almost 1500 tasks/sec.
Performance decreases after around 300 tasks per
bundle. We attribute this drop to the array data
structure implementation in the Axis software that GT4
uses to handle XML serialization and de-serialization.
(Axis implements the array data-structure used to store
the representation of the bundled tasks as a grow-able
array, copying to a new bigger array each time its size
increases.) We will investigate this inefficiency further
to see if this limitation can be remedied.

0.1

1

10

100

1 10 100 1000 10000

Number of tasks bundled per WS call

Ti
m

e
pe

r T
as

k
(m

s)

10

100

1000

10000

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Time / Task
Throughput (Tasks/sec)

Figure 3: Bundling throughput and cost per task

4.3 Efficiency & Speedup
Figures 4 and 5 show speedup (SP=T1/TP, where Tn is
the execution time on n processors) and efficiency
(EP=SP/P) as a function of number of executors and
task length.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50
Number of Workers

S
pe

ed
up

Ideal
Sleep 32
Sleep 16
Sleep 8
Sleep 4
Sleep 2
Sleep 1
Sleep 0

Figure 4: Speedup for varying task length and

number of executors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50
Number of Workers

E
ffi

ci
en

cy

Ideal
Sleep 32
Sleep 16
Sleep 8
Sleep 4
Sleep 2
Sleep 1
Sleep 0

Figure 5: Efficiency as a function of task length and

number of executors
We see that even with short tasks, we achieve high
efficiencies and speedup. These experiments were
conducted on TG_ANL_IA64 with no security and no
optimizations, such as bundling or “piggy-backing.”
We plan to redo the experiments with these
optimizations enabled; we expect the lines to be

significantly closer to each other, and altogether closer
to the ideal speedup and efficiency.

4.4 Scalability
To test scalability and robustness, we performed
experiments that pushed Falkon to its limits.

Our first experiment studies Falkon’s behavior as the
task queue increases in length. We constructed a client
that submits two million “sleep 0” tasks to a dispatcher
configured with a Java heap size set to 1.5GB. We
created 32 executors on 16 machines from
TG_ANL_IA32 and ran the dispatcher on UC_x64 and
the client on TP_UC_x64.

Figure 6 results show the entire run as it progressed in
time. The solid black line is the instantaneous queue
length, the light blue dots are raw samples (once per
sec) of achieved throughput in terms of task
completion, and the darker blue line is the moving
average (over 120 sample intervals) of raw throughput.
Average throughput was 268 tasks/sec, but was
clustered at either around 300 tasks/sec or around 225
tasks/sec. Note the slight increase when the queue
stopped growing, as the client finished submitting all
two million tasks.

Figure 6: Long running test with 2M tasks

We attribute the considerable second-by-second
performance variations to JVM garbage collection. By
configuring the JVM to garbage collect more
frequently, we can potentially reduce this variation.

In a second experiment, we tested how many executors
the dispatcher could handle. As no system available to
us could provide us with more than a few hundred
physical machines, we ran multiple executors on each
physical machine, in essence emulating a larger
number of machines. Others [15] have used this
experimental method with success.

We performed our experiment on TP_UC_x64, on
which we configured one dispatcher machine, one

client machine, and 60 machines to run executors. We
ran 900 executors (split over four JVMs) on each
machine, for a total of 900x60=54,000 executors. Once
we started up the system and all 54K executors
registered and were ready to receive work, we started
the experiment consisting of 54K tasks of “sleep 480”
(8 minutes). For this experiment, we disabled all
security, and only enabled bundling between the client
and the dispatcher. Note that piggy-backing would
have made no difference in this case as each executor
only processed one task each.

Figure 7 shows that the dispatch rate (green line) is on
par with the submit rate. The black line shows the
number of busy executors, going from 0 to 54K in 408
secs. As soon as the first task finishes after 480 secs
(that is the task length), results start to be delivered at
the client at about the same rate as they were submitted
and dispatched. Overall throughput (including ramp up
and ramp down time) was about 60 tasks/sec.

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800 900

Time (sec)

Th
ro

ug
hp

ut
 (p

er
 s

ec
)

0

10,000

20,000

30,000

40,000

50,000

B
us

y
Ex

ec
ut

or
s

Busy Executors

Submit
Rate

Dispatch
Rate

Deliver
Rate

Figure 7: Falkon scalability with 54K executors

Figure 8 shows the per task overhead in millisec for the
54K task experiment from Figure 7, ordered by their
start time of each task.

Figure 8: Task overhead with 54K executors

We see that the majority of the overhead was below
200 ms, with just a few higher than that, with a
maximum of 1300 ms. The overhead is defined as the

time it takes an executor to create a thread to handle
the task, pick up a task via one WS call, perform an
Java exec on the specified command (sleep 480), and
send the result (the exit return code) back via one WS
call, minus 480 secs (the task run time). Note that we
have 900 executors on each physical machine, so this
overhead is higher than normal as each thread was only
getting a fraction of the processing power of the
machine.

4.5 Dynamic Resource Provisioning
To study provisioner performance, we constructed a
synthetic 18-stage workload, in which the numbers of
tasks and task lengths vary between stages. Figure 9
shows the number of tasks per stage and the number of
machines needed per stage if each task is mapped to a
separate machine (up to a maximum of 32 machines).
Note the exponential ramp up in the number of tasks
for the first few stages, a sudden drop at stage 8, and a
sudden surge of many tasks in stages 9 and 10, another
drop in stage 11, a modest increase in stage 12,
followed by a linear decrease for several stages, and
finally an exponential decrease until the last stage has
only a single task. All tasks run for 60 secs except
those in stages 8, 9, and 10, which run for 120, 6, and
12 secs, respectively. In total, the 18 stages have 1,000
tasks, summing to 17,820 CPU secs, and can complete
in an ideal time of 1,260 secs on 32 machines.

1 2 4 8 16 32
64

1

640

160

3 20 18 16 8 4 2 1
0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Stage Number

N
um

be
r o

f M
ac

hi
ne

s

0

100

200

300

400

500

600

700

N
um

be
r o

f T
as

ks# of Machines
of Tasks

- 18 Stages
- 1,000 tasks
- 17,820 CPU seconds
- 1,260 total time on 32 machines

Figure 9: The 18-stage synthetic workload.

We configured the provisioner to acquire at most 32
machines from TG_ANL_IA32 and TG_ANL_IA64,
both of which were relatively lightly loaded. (100
machines were available of the total 162 machines.)
We measured the execution time in six configurations:

• GRAM+PBS: Each task was submitted as a separate
GRAM task over PBS, without imposing any hard
limits on the number of machines to use; there were
about 100 machines available for this experiment.

• Falkon-15, Falkon-60, Falkon-120, Falkon-180:
Falkon configured to use a minimum of zero and a

maximum of 32 machines; the allocation policy we
used was all-at-once, and the resource release policy
idle time was set to 15, 60, 120, and 180 secs (to
give four separate experiments).

• Falkon-∞: Falkon, with the provisioner configured
to retain a full 32 machines for one hour.

Table 2 gives, for each experiment, the average per-
task queue time and execution time, and also the ratio
exec_time/(exec_time+queue_time). The queue_time
includes time waiting for the provisioner to acquire
nodes, time spent starting executors, and time tasks
spend in the dispatcher queue. We see that the ratio
improves from 17% to 28.7% as the idle time setting
increases from 15 secs to 180 secs; for Falkon-∞, it
reaches 29.2%, a value close to the ideal of 29.7%.
(The ideal is less than 100% because several stages
have more than 32 tasks, which means tasks must be
queued when running, as we do here, on 32 machines.)
GRAM+PBS yields the worst performance, with only
8.5% on average, less than a third of ideal.

Table 2: Average per-task queue and execution
times for synthetic workload

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal
(32 nodes)

Queue
Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2
Execution
Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%
The average per-task queue times range from a near
optimal 43.5 secs (42.2 secs is ideal) to as high as 87.3
secs, more than double the ideal queue time. In
contrast, GRAM+PBS experience a queue time that is
15 times larger than the ideal at 611.1 secs. Also, note
the execution time for Falkon with the resource
provisioning (both static and dynamic) is the same
across all the experiments, and is within 100 ms of
ideal (which essentially accounts for the dispatch cost
and delivering the result); in contrast, GRAM+PBS
have an average execution time of 56.5 secs,
significantly larger than the ideal time. This large
difference in execution time is attributed to the large
per task overhead GRAM and PBS have, which further
strengthens our argument that they are not suitable for
short tasks.

Table 3 shows the total time to complete the 18 stages,
the resource utilization, the execution efficiency, and
the number of resource allocations. We define resource
utilization as the ratio of resources used to resources
used + resources wasted (i.e., resources consumed but
not used for task execution), and execution efficiency
as the ratio of ideal time to actual time.

The resources used are the same (17,820 CPU secs) for
all cases, as we have fixed run times for all 1000 tasks.

As for resources wasted, we expected GRAM+PBS to
not have any as each machine is released after one task
is run; in reality, the measured execution times were
longer than the actual task execution times, and hence
the resources wasted was high in this case: 41,040 secs
over the entire experiment. (We define task execution
time in the GRAM+PBS case to be from the time
GRAM sends a notification of the task changing its
state to being “Active”—meaning that PBS has taken
the task off the wait queue and placed into the active
queue assigned to some physical machine—to the time
the state changes to “Done,” at which point the task has
finished its execution.) The average execution time of
56.5 secs shows that GRAM+PBS is slower than
Falkon in dispatching the task to the remote machine,
preparing the remote machine to execute the task, and
cleaning up and releasing the machine. Note that the
reception of the “Done” state change in GRAM4 does
not imply that the utilized machine is ready to receive
another task—PBS takes even longer to make the
machine available again for more work, which makes
GRAM+PBS resource wastage yet worse.

Falkon with dynamic resource provisioning fairs better
from the perspective of resource wastage. Falkon-15
has the least amount of wasted resources with 2032
CPU secs, and Falkon-∞ (which never de-allocates
nodes during the experiment) has the worst with
22,940 CPU secs for the duration of the experiment.

The resource utilization shows the fraction of time the
machines were executing tasks vs. idle. Due to its high
resource wastage, GRAM+PBS achieves a utilization
of only 30%, while Falkon-15 reaches 89%. Falkon-∞
is 44%. Notice that as the resource utilization
increases, so does the time to complete—as we assume
that the provisioner has no foresight regarding future
needs, delays are incurred allocating machines
previously de-allocated due to a shorter idle time
setting. Note the number of resource allocations
(GRAM4 calls requesting resources) for each
experiment, ranging from 1000 allocations for
GRAM+PBS to less than 11 for Falkon with
provisioning. For Falkon-∞, the number of resource
allocations is zero since machines were provisioned
prior to the experiment starting, and that time is not
included in the time to complete the workload.

If we had used a different allocation policy (e.g., one-
at-a-time), the Falkon results would have been less
close to ideal, as the number of resource allocations
would have grown significantly. The relatively slow
handling of such requests by GRAM+PBS (~1/sec on

TG_ANL_IA32 and TG_ANL_IA64) would have
delayed executor startup and thus increased the time
tasks spend in the queue waiting to be dispatched.

The higher the desired resource utilization (due to
more aggressive dynamic resource provisioning to
avoid resource wastage), the longer the elapsed
execution time (due to queuing delays and overheads
of the resource provisioning in the underlying LRM).
This ability to trade off resource utilization and
execution efficiency is an advantage of Falkon.

Table 3: Summary of overall resource utilization
and execution efficiency for the synthetic workload

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal
(32 nodes)

Time to
complete

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution
Efficiency 26% 72% 75% 84% 85% 99% 100%
Resource

Allocations 1000 11 9 7 6 0 0
To communicate how provisioning works in practice,
we show in Figures 10 and 11 details of experiment
execution for Falkon-15 and Falkon-180, respectively.

0

5

10

15

20

25

30

35

0 580.386 1156.853 1735.62
Time (sec)

of

 E
xe

cu
to

rs

Allocated
Registered
Active

Figure 10: Synthetic workload for Falkon-15

0

5

10

15

20

25

30

35

0 494.438 986.091 1477.398
Time (sec)

of

 E
xe

cu
to

rs

Allocated
Registered
Active

Figure 11: Synthetic workload for Falkon-180

These figures show the instantaneous number of
allocated, registered, and active executors over time.
Allocated executors (blue) are those for which creation

and registration are in progress. Creation and
registration time can vary between 5 and 65 secs,
depending on when a creation request is submitted
relative to the PBS scheduler polling loop (which we
believe occurs at 60 sec intervals). (JVM startup time
and registration generally consume less than five secs.)
Registered executors (red) are ready to process tasks,
but are not active. Finally, active executors (green) are
actively processing tasks. In summary, blue is startup
cost, red is wasted resources, and green is useful work.

4.6 Security Overhead
Security requirements vary according to application
and environment. In Figure 2, we showed that peak
throughput declined from 440 tasks/sec without
security to 180 tasks/sec when performing both
authentication and encryption. We describe here an
experiment in which a client submits 30 tasks, each 60
secs in length, which are then dispatched in sequence
to a single executor. We measure time from first task
submission to last task completion. The experiment is
similar to one reported for MyCluster [11]. We ran all
processes on TG_ANL_IA32 processors, and disabled
all optimizations such as bundling or piggy-backing.

This kind of a workload is generally going to produce
the highest overhead as the entire experiment is
serialized, and there is no opportunity for the
dispatcher to overlap computation and communication.

Table 4 summarizes performance for the various
security levels. Falkon took 1803.46 secs to run this 30
task workload without any security. The ideal time
with no overhead would have been 30x60 = 1800 secs,
so we computed our overhead to be 3.46 secs or
0.19%. The highest level of security we have available
in GT4 is authentication + encryption, which surpasses
the security level used in the MyCluster experiment
using just authentication. The MyCluster overhead
ranged from 5% to 25% depending on which
underlying scheduling technology they used (Condor
or SGE respectively). Our overhead is substantially
lower, with overheads ranging from 0.30% to 0.96%
for the various security mechanisms.

Table 4: Falkon overhead for various security levels
Exec Time

(sec)
Exec

Overhead %

Ideal Tasks Execution 1800.00 0.00%
No Security 1803.46 0.19%

GSI Transport
(Authentication + Encryption) 1817.37 0.96%

GSI Secure Conversation
(Authentication + Encryption) 1815.58 0.87%

5 Application Experiments
We have integrated Falkon into the Karajan [2, 3]
workflow engine, which in term is used by the Swift
parallel programming system. Thus, Karajan and Swift
applications can use Falkon without modification.
Using Falkon in this way, we demonstrated reductions
in end-to-end run time by as much as 90% when
compared to traditional approaches in which the
applications used the batch schedulers directly.

Swift has been applied to a variety of science
applications in disciplines such as physical sciences,
biological sciences, social sciences, humanities,
computer science, and science education. Table 5
characterizes some applications in terms of the typical
number of tasks and the number of stages.

Table 5: A list of potential applications that could
benefit from the use of Falkon

Application #Jobs/workflow #Levels
ATLAS: High Energy Physics Event Simulation 500K 1

fMRI DBIC: AIRSN Image Processing 100s 12
FOAM: Ocean/Atmosphere Model 2000 3

GADU: Genomics 40K 4
HNL: fMRI Aphasia Study 500 4

NVO/NASA: Photorealistic Montage/Morphology 1000s 16
QuarkNet/I2U2: Physics Science Education 10s 3 ~ 6

RadCAD: Radiology Classifier Training 1000s 5
SIDGrid: EEG Wavelet Processing, Gaze Analysis 100s 20

SDSS: Coadd, Cluster Search 40K, 500K 2, 8
We illustrate the distinctive dynamic features in Swift
using an fMRI [21] analysis workflow from cognitive
neuroscience, and a photorealistic montage application
from the national virtual observatory project [32, 22].

5.1 Functional Magnetic Resonance Imaging
This medical application is a four-step pipeline [21].
An fMRI Run is a series of brain scans called volumes,
with a Volume containing a 3D image of a volumetric
slice of a brain image, which is represented by an
Image and a Header. We ran this application for four
different problem sizes, ranging from 120 volumes
(480 tasks for the four stages) to 480 volumes (1960
tasks). Each task can run in a few secs on a
TG_ANL_IA64 processor.

We compared three implementation approaches: task
submission via GRAM+PBS, a variant of that
approach in which tasks are clustered into eight groups,
and Falkon with a fixed set of eight executors. In each
case, we ran the client on UC_IA32 and application
tasks on TG_ANL_IA64.

In Figure 12 we show execution times for the different
approaches and for different problem sizes. Although
GRAM+PBS could potentially have used up to 62
nodes, it performs badly due to the small tasks.
Clustering reduced execution time by more than four

times on eight processors. Falkon further reduced the
execution time, particularly for smaller problems.

1239

2510

3683

4808

456
866 992 1123

120 327 546 678

0

1000

2000

3000

4000

5000

6000

120 240 360 480
Input Data Size (Volumes)

Ti
m

e
(s

)

GRAM
GRAM/Clustering
Falkon

Figure 12: Execution Time for the fMRI Workflow

5.2 Montage Image Mosaicing
Montage generates large astronomical image mosaics
by composing multiple small images [32, 22]. A four-
stage pipeline reprojects each image into a common
coordinate space; performs background rectification
(calculates a list of overlapping images; computes
image difference between each pair of overlapping
images; and fits difference images into a plane);
performs background correction; and co-adds the
processed images into a final mosaic. (To enhance
concurrency, we decompose the co-add into two steps.)

We considered a modest-scale computation that
produces a 3°x3° mosaic around galaxy M16. There
are about 440 input images and 2,200 overlapping
image sections between them. The resulting task graph
has many small tasks.

Figure 13 shows execution times for three versions of
Montage:

0

500

1000

1500

2000

2500

3000

3500

mProj
ec

t

mDiff/
Fit

mBac
kg

rou
nd

mAdd
(su

b)

mAdd tot
al

Components

Ti
m

e
(s

)

GRAM/Clustering
MPI
Falkon

Figure 13: Execution time for Montage application

Swift with clustering, submitting via GRAM+PBS;
Swift submitting via Falkon; and an MPI version

constructed by the Montage team. The second co-add
stage was only parallelized in the MPI version; thus,
Falkon performs poorly in this step. Both the GRAM
and Falkon versions staged in data, while the MPI run
assumed data was pre-staged. Despite these
differences, Falkon achieved performance similar to
that of the MPI version.

Deelman et al. have also created a task-graph
implementation of the Montage code, using Pegasus
[33]. They do not implement quite the same application
as us: for example, they run two tasks (mOverlap and
mImgtlb) on the portal rather than on compute nodes,
they combine what for us are two distinct tasks (mDiff
and mFit) into a single task, mDiffFit, and they omit
the final mAdd phase. Thus, direct comparison is
difficult. However, if the final mAdd phase is omitted
from the comparison, Swift+Falkon is faster by about
5% (1067 secs vs. 1120 secs) when compared to MPI,
while Pegasus is reported as being somewhat slower
than MPI. We attribute these differences to two factors:
first, the MPI version performs initialization and
aggregation actions before each step; second, Pegasus
uses Condor glide-ins, which are heavy-weight relative
to Falkon.

6 Future Work
We plan to implement and evaluate enhancements,
such as task pre-fetching, alternative technologies, data
management, and three-tier architecture.

Pre-fetching: As is commonly done in manager-
worker systems, executors can request new tasks
before they complete execution of old tasks, thus
overlapping communication and execution.

Technologies: Performance depends critically on the
behavior of our task dispatch mechanisms; the number
of messages needed to interact between the various
components of the system; and the hardware,
programming language, and compiler used. We
implemented Falkon in Java and use the Sun JDK 1.4.2
to compile and run Falkon. We use the GT4 Java WS-
Core to handle Web Services communications.

One potential optimization is to rewrite Falkon in
C/C++, (using, for example, the Globus Toolkit C WS-
Core). Another is to change internal communications
between components to a custom TCP-based protocol.
However, dispatch rates are adequate for applications
studied to date, and the primary obstacle to scaling is
likely to be data access, not task dispatch.

Data management: Many Swift applications read and
write large amounts of data. Applications typically
access data from a shared data repository (e.g., NFS,

GPFS, GridFTP, web server). Thus, data access can
become a bottleneck as applications scale. We expect
that data caching, proactive data replication, and data-
aware scheduling can offer significant performance
improvements for applications that have locality in
their data access patterns. We plan to implement data
caching mechanisms in Falkon executors, which would
allow executors to populate local caches with data the
corresponding task would require.

In conjunction with data caching we may wish to
implement a data-aware dispatcher. We will evaluate
to what extent data aware dispatching reduces
performance. A user can choose which dispatcher and
executor to use for a specific application..

3-Tier Architecture: Falkon currently requires that
the dispatcher and client can each send messages to the
other. Thus, each must have at least one port open in
their firewall. We have implemented a polling
mechanism to bypass firewalls on executors or clients,
but we loose this performance and scalability port open
in the firewall on which it will accept WS due to the
polling mechanism vs. the notification mechanisms.
Note that the dispatcher is still required to receive
messages from clients and executors.

Falkon also currently assumes that executors operate in
a public IP space, so that the dispatcher can
communicate with them directly. If (as is sometimes
the case) a cluster is configured with a private IP space,
to which only a head node has access, the Falkon
dispatcher must run on that head node. This
organization prevents the use of multiple such clusters.
A potential solution to this problem is to introduce
intermediate “forwarder” nodes that would act to pass
messages between dispatcher and executors.

7 Conclusions
The schedulers used to manage parallel computing
clusters are not typically configured to enable easy
configuration of application-specific scheduling
policies. In addition, their sophisticated scheduling
algorithms and feature-rich code base can result in
significant overhead when executing many short tasks.

Falkon, a Fast and Light-weight tasK executiON
framework, is designed to enable the efficient dispatch
and execution of many small tasks. To this end, it uses
a multi-level scheduling strategy to enable separate
treatment of resource allocation (via conventional
schedulers) and task dispatch (via a streamlined,
minimal-functionality dispatcher). Clients submit task
requests to a dispatcher, which in turn passes tasks to
executors. A separate provisioner is responsible for
creating and destroying provisioners in response to

changing client demand; thus, users can trade off
application execution time and resource utilization.
Bundling and piggybacking optimizations can reduce
further per-task dispatch cost.

Microbenchmarks show that Falkon can achieve one to
two orders of magnitude higher throughput (440
tasks/sec) when compared to other batch schedulers. It
can sustain high throughput with up to 54,000
managed executors and can process 2,000,000 tasks
over a two hour period, operating reliably even as the
queue length grew to 1,300,000 tasks.

A “Falkon provider” allows applications coded to the
Karajan workflow engine and the Swift parallel
programming system to use Falkon with no
modification. When using Swift and Falkon together,
we demonstrated reductions in end-to-end run time by
as much as 90% for applications from the astronomy
and medical fields, when compared to the same
applications run over batch schedulers.

References
[1] D. Thain, T. Tannenbaum, and M. Livny, "Distributed

Computing in Practice: The Condor Experience" Concurrency
and Computation: Practice and Experience, Vol. 17, No. 2-4,
pages 323-356, February-April, 2005.

[2] Swift Workflow System: www.ci.uchicago.edu/swift
[3] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski,

I. Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast, Reliable,
Loosely Coupled Parallel Computation”, under review at IEEE
Workshop on Scientific Workflows 2007.

[4] I. Foster, J. Voeckler, M. Wilde, Y. Zhao. “Chimera: A Virtual
Data System for Representing, Querying, and Automating Data
Derivation”, SSDBM 2002.

[5] J.-P Goux, S. Kulkarni, J.T. Linderoth, and M.E. Yoder, "An
Enabling Framework for Master-Worker Applications on the
Computational Grid," Proceedings of the Ninth IEEE
International Symposium on High Performance Distributed
Computing, 2000.

[6] I. Foster, C. Kesselman, S. Tuecke, "The Anatomy of the
Grid", Int. Supercomputing Applications, 2001.

[7] G. Banga, P. Druschel, J.C. Mogul. “Resource Containers: A
New Facility for Resource Management in Server Systems.”
Symposium on Operating Systems Design and Implementation,
1999.

[8] J.A. Stankovic, K. Ramamritham,, D. Niehaus, M. Humphrey,
G. Wallace, “The Spring System: Integrated Support for
Complex Real-Time Systems”, Real-Time Systems, May 1999,
Vol 16, No. 2/3, pp. 97-125.

[9] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke,
"Condor-G: A Computation Management Agent for Multi-
Institutional Grids," Cluster Computing, vol. 5, pp. 237-246,
2002.

[10] G. Singh, C. Kesselman, E. Deelman, “Optimizing Grid-Based
Workflow Execution.” Journal of Grid Computing, Volume
3(3-4), December 2005, Pages 201-219.

[11] E. Walker, J.P. Gardner, V. Litvin, E.L. Turner, “Creating
Personal Adaptive Clusters for Managing Scientific Tasks in a
Distributed Computing Environment”, Workshop on
Challenges of Large Applications in Distributed Environments,
2006.

[12] G. Singh, C. Kesselman E. Deelman. “Performance Impact of
Resource Provisioning on Workflows”, ISI Tech Report 2006.

[13] G. Mehta, C. Kesselman, E. Deelman. “Dynamic Deployment
of VO-specific Schedulers on Managed Resources,” USC ISI,
2006.

[14] D. Thain, T. Tannenbaum, and M. Livny, "Condor and the
Grid", in Fran Berman, Anthony J.G. Hey, Geoffrey Fox,
editors, Grid Computing: Making The Global Infrastructure a
Reality, John Wiley, 2003. ISBN: 0-470-85319-0

[15] E. Robinson, D.J. DeWitt. “Turning Cluster Management into
Data Management: A System Overview”, Conference on
Innovative Data Systems Research, 2007.

[16] B. Bode, D.M. Halstead, R. Kendall, Z. Lei, W. Hall, D.
Jackson. “The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters”, Usenix, Proceedings of the 4th
Annual Linux Showcase & Conference, 2000.

[17] S. Zhou. “LSF: Load sharing in large-scale heterogeneous
distributed systems,” Workshop on Cluster Computing, 1992.

[18] W. Gentzsch, "Sun Grid Engine: Towards Creating a Compute
Power Grid," 1st International Symposium on Cluster
Computing and the Grid, 2001.

[19] D.P. Anderson. “BOINC: A System for Public-Resource
Computing and Storage.” 5th IEEE/ACM International
Workshop on Grid Computing. November 8, 2004.

[20] D.P. Anderson, E. Korpela, R. Walton. “High-Performance
Task Distribution for Volunteer Computing.” IEEE Int.
Conference on e-Science and Grid Technologies, 2005.

[21] The Functional Magnetic Resonance Imaging Data Center,
http://www.fmridc.org/, 2007.

[22] G.B. Berriman, et al. ”Montage: a Grid Enabled Engine for
Delivering Custom Science-Grade Image Mosaics on
Demand.” Proceedings of the SPIE Conference on
Astronomical Telescopes and Instrumentation. 2004.

[23] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar,
S. Krishnakumar, D. Pazel, J. Pershing, and B. Rochwerger,
"Oceano - SLA Based Management of a Computing Utility," in
7th IFIP/IEEE International Symposium on Integrated Network
Management, 2001.

[24] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A.
Yumerefendi, J. Chase. “Toward a Doctrine of Containment:
Grid Hosting with Adaptive Resource Control,” IEEE/ACM
SuperComputing 2006.

[25] J. Bresnahan, I. Foster. “An Architecture for Dynamic
Allocation of Compute Cluster Bandwidth”, MS Thesis,
Department of Computer Science, University of Chicago,
December 2006.

[26] TeraGrid, http://www.teragrid.org/
[27] M. Feller, I. Foster, and S. Martin. “GT4 GRAM: A

Functionality and Performance Study”, TeraGrid 07.
[28] I. Foster, "Globus Toolkit Version 4: Software for Service-

Oriented Systems," Conference on Network and Parallel
Computing, 2005.

[29] The Globus Security Team. “Globus Toolkit Version 4 Grid
Security Infrastructure: A Standards Perspective,” Technical
Report, Argonne National Laboratory, MCS, September 2005.

[30] I. Raicu, I. Foster, A. Szalay. “Harnessing Grid Resources to
Enable the Dynamic Analysis of Large Astronomy Datasets”,
IEEE/ACM SC 06.

[31] I. Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A
Science Gateway for Large-scale Astronomy Data Analysis”,
TeraGrid Conference 2006.

[32] J.C. Jacob, et al. ”The Montage Architecture for Grid-Enabled
Science Processing of Large, Distributed Datasets.”
Proceedings of the Earth Science Technology Conference 2004

[33] E. Deelman, et al. "Pegasus: a Framework for Mapping
Complex Scientific Workflows onto Distributed Systems",
Scientific Programming Journal, Vol 13(3), 2005, Pages 219-
237.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

