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Abstract 
To enable the rapid execution of many tasks on 
compute clusters, we have developed Falkon, a Fast 
and Light-weight tasK executiON framework. Falkon 
uses (1) multi-level scheduling to separate resource 
acquisition (via, e.g., requests to batch schedulers) 
from task dispatch, and (2) a streamlined dispatcher. 
Multi-level scheduling, introduced in operating 
systems research in the 1990s, has been applied to 
clusters by the Condor team and others, while 
streamlined dispatchers are found in, e.g, BOINC. 
Falkon’s integration of the techniques delivers 
performance not provided by any other system. We 
describe Falkon architecture and implementation, and 
present performance results for both microbenchmarks 
and applications. Microbenchmarks show that Falkon 
throughput (440 tasks/sec) and scalability (to 54,000 
executors and 2,000,000 tasks processed in just over 
two hours) are one to two orders of magnitude better 
than other schedulers. Applications (executed by the 
Swift parallel programming system) reduce end-to-end 
run time of up to 90% for large-scale astronomy and 
medical applications, relative to versions that execute 
tasks via separate scheduler submissions.   

Keywords: parallel programming, dynamic resource 
provisioning, scheduling, Grid computing  

1 Introduction 
Many interesting computations can be expressed 
conveniently as data-driven task graphs, in which 
individual tasks wait for input to be available, perform 
computation, and produce output. Systems such as 
DAGMan [1], Karajan [2], Swift [3], and VDS [4] 
support this model. These systems have all been used 
to encode and execute thousands of individual tasks. 

In such task graphs, as well as in the popular master-
worker model [5], many tasks may be logically 
executable at once. Such tasks may be dispatched to a 
parallel compute cluster or (via the use of grid 
protocols [6]) to many such clusters. The batch 
schedulers used to manage such clusters receive 
individual tasks, dispatch them to idle processors, and 
notify clients when execution is complete. 

This strategy of dispatching tasks directly to batch 
schedulers has two disadvantages. First, because a 
typical batch scheduler provides rich functionality 
(e.g., multiple queues, flexible task dispatch policies, 
accounting, per-task resource limits), the time required 
to dispatch a task can be large—30 secs or more—and 
the aggregate throughput relatively low (perhaps two 
tasks/sec). Second, while batch schedulers may support 
different queues and policies, the policies implemented 
in a particular instantiation may not be optimized for 
many tasks. For example, a scheduler may allow only a 
modest number of concurrent submissions for a single 
user. These factors can cause problems when dealing 
with many tasks. 

One solution to this problem is to transform 
applications (manually or automatically) to reduce the 
number of tasks. However, such transformations can be 
complex and/or may place a burden on the user. 
Another approach is to employ multi-level scheduling 
[7, 8]. A first-level request to a batch scheduler 
allocates resources to which a second-level scheduler 
dispatches tasks. The second-level scheduler can 
implement specialized support for task graph 
applications. Frey et al. [9] and Singh et al. [10] create 
an embedded Condor pool by “gliding in” Condor 
workers to a compute cluster, while MyCluster [11] can 
embed both Condor pools and SGE clusters. Singh et 
al. [12, 13] report 50% reductions in execution time 
relative to a single-level approach.  

We seek to achieve further improvements by:  

• Reducing task dispatch time by using a streamlined 
dispatcher that eliminates support for features such 
as multiple queues, priorities, accounting, etc. 

• Using an adaptive provisioner to acquire and/or 
release resources as application demand varies.  

To explore these ideas, we have developed Falkon, a 
Fast and Light-weight tasK executiON framework. 
Falkon incorporates a lightweight task dispatcher, to 
receive, enqueue, and dispatch tasks; a simple task 
executor, to receive and execute tasks; and a 
provisioner, to allocate and deallocate executors. 



 

Microbenchmarks show that Falkon can process 
millions of task requests and scale to over 50,000 
executor nodes. A synthetic application demonstrates 
the benefits of adaptive provisioning. Finally, results 
for two applications involving many small tasks 
demonstrate that substantial speedups can be achieved 
for real scientific applications. 

2 Related Work 
Full-featured local resource managers (LRMs) such as 
Condor [1], Condor-J2 [15], PBS [16], LSF [17] support 
client specification of resource requirements, data 
staging, process migration, dynamic load balancing, 
check-pointing, accounting, and daemon fault 
recovery. Falkon, in contrast, is not a full-featured 
LRM: it focuses solely on efficient task dispatch and 
thus can omit these features  to streamline task 
submission. This narrow focus is possible because 
Falkon can rely on LRMs for certain functions (e.g., 
accounting) and clients for others (e.g., recovery). 

The BOINC “volunteer computing” system [19, 20] has 
a similar architecture to that of Falkon. BOINC’s 
database-driven task dispatcher is estimated to be 
capable of dispatching 8.8M tasks per day to 400K 
workers. This estimate is based on extrapolating from 
smaller synthetic benchmarks of CPU and I/O 
overhead, on the task distributor only, for the execution 
of 100K tasks. By comparison, Falkon has been 
measured to execute 2M artificial tasks in two hours 
using the actual Falkon code, and has scaled to 54K 
managed executors with similarly high throughput. 
This test as well as other throughput tests achieving 
440 tasks/sec suggest that Falkon can provide higher 
throughput than BOINC. 

Multi-level scheduling has been applied at the OS level 
[27, 30] to provide faster scheduling for groups of 
tasks for a specific user or purpose by employing an 
overlay that does lightweight scheduling within a 
heavier-weight container of resources: e.g., threads 
within a process or pre-allocated thread group. 

Frey and his colleagues pioneered the application of 
this principle to clusters via their work on Condor 
“glide-ins” [9]. Requests to a batch scheduler 
(submitted, for example, via Globus GRAM) create 
Condor “startd” processes, which then register with a 
Condor resource manager that runs independently of 
the batch scheduler. Others have also used this 
technique. For example, Mehta et al. [13] embed a 
Condor pool in a batch-scheduled cluster, while 
MyCluster [11] creates “personal clusters” running 
Condor or SGE. Such “virtual clusters” can dedicated 
to a single workload; thus, Singh et al. find, in a 
simulation study [12], a reduction of about 50% in 

completion time. However, because they rely on 
heavyweight schedulers to dispatch work to the virtual 
cluster, the per-task dispatch time remains high. 

In a different space, Bresnahan et al. [25] describe a 
multi-level scheduling architecture specialized for the 
dynamic allocation of compute cluster bandwidth. A 
modified Globus GridFTP server varies the number of 
GridFTP data movers as server load changes. 

Appleby et al. [23] were one of several groups to 
explore dynamic resource provisioning within a data 
center. Ramakrishnan et al. [24] also address adaptive 
resource provisioning with a focus primarily on 
resource sharing and container level resource 
management. 

In summary, Falkon’s innovation is its combination of 
a fast lightweight scheduling overlay on top of virtual 
clusters with the use of standard grid protocols for 
adaptive resource allocation. This combination of 
techniques allows us to achieve higher task throughput 
than previous systems, while also offering applications 
the ability to trade-off system responsiveness, resource 
utilization, and execution efficiency. 

3 Architecture and Implementation 

3.1 Execution Model 
Each task is dispatched to a computational resource, 
selected according to the dispatch policy. If a response 
is not received after a time determined by the replay 
policy, or a failed response is received, the task is re-
dispatched according to the dispatch policy. The 
resource acquisition policy determines when and for 
how long to acquire new resources, and how many 
resources to acquire. The resource release policy 
determines when to release resources. 

Dispatch policy. We consider here only the next-
available policy, which dispatches each task to the next 
available resource. We assumed that all data needed by 
a task is available in a shared file system.  In the future, 
we will examine other dispatch policies that take into 
account data availability.  

Resource Acquisition Policy. This policy determines 
the number of resources, n, to acquire; the length of 
time for which resources should be requested; and the 
request(s) to generate to LRM(s) to acquire those 
resources. We have implemented five strategies that 
variously generate a single request for n resources; 
generate n requests for a single resource; generate a 
series of arithmetically or exponentially larger 
requests; or use system functions to determine 
available resources. In the experiments reported in this 



paper, we considered only first (“all-at-once strategy”) 
due to space restrictions. 

Resource Release Policy. We distinguish between 
centralized and distributed resource release policies. In 
a centralized policy, decisions are made based on state 
information available at a central location. For 
example: “if there are no tasks to process, release all 
resources,” and “if the number of queued tasks is less 
than q, release a resource.” In a distributed policy, 
decisions are made at individual resources based on 
state information available at the resource. For 
example: “if the resource has been idle for time t, the 
acquired resource should release itself.” Note that 
resource acquisition and release policies are typically 
not independent: in most batch schedulers, one must 
release all resources obtained in a single request at 
once. In the experiments reported in this paper, we 
used a distributed policy, releasing resources after a 
specified idle time. 

3.2 Architecture 
Falkon consists of a dispatcher, a provisioner, and zero 
or more executors (Figure 1). The dispatcher accepts 
tasks from clients and implements the dispatch policy. 
The provisioner implements the resource acquisition 
policy. Executors run tasks received from the 
dispatcher. Components communicate via Web 
Services (WS) messages, except for notifications are 
performed via a custom TCP-based protocol. 

 
Figure 1: Falkon architecture overview 

The dispatcher implements the factory/instance 
pattern, providing a create instance operation to allow 
a clean separation among different clients. To access 
the dispatcher, a client first requests creation of a new 
instance, for which is returned a unique endpoint 
reference (EPR). The client then uses that EPR to 
submit tasks, monitor progress, retrieve results, and 
(finally) destroy the instance. Each instance can be 
thought of as a separate instantiation of the dispatcher, 
maintaining its own task queue and related state.  

A client “submit” request takes an array of tasks, each 
with working directory, command to execute, 

arguments, and environment variables. It returns an 
array of outputs, each with the task that was run, its 
return code , and optional output strings (STDOUT and 
STDERR contents). Each instance contains its own 
work queue. A shared notification engine is used to 
notify executors that work is available for pick up. This 
engine maintains a queue on which a pool of threads 
operate to send out notifications. The GT4 container 
also has a pool of threads that handle WS messages. 
Profiling shows that most dispatcher time is spent 
communicating (WS calls, notifications). Increasing 
the number of threads should allow the service to scale 
on newer multicore and multiprocessor systems.  

The dispatcher runs within a Globus Toolkit 4 (GT4) 
[28] WS container, which provides authentication, 
message integrity, and message encryption 
mechanisms, via transport-level, conversation-level, or 
message-level security [29]. 

The provisioner is responsible for creating and 
destroying executors. It is initialized by the dispatcher 
with information about the state to be monitored and 
how to access it; the rule(s) under which the 
provisioner should create/destroy executors; the 
location of the executor code; bounds on the number of 
executors to be created; bounds on the time for which 
executors should be created; and the allowed idle time 
before executors are destroyed.  

The provisioner periodically monitors dispatcher state 
and, based on the supplied rules, determines whether to 
create additional executors, and if so, how many, and 
for how long. Creation requests are issued via GRAM4 
[27], to abstract away LRM details.  

A new executor registers with the dispatcher. Work is 
then supplied as follows: (1) the dispatcher notifies the 
executor when work is available; (2) the executor 
requests work; (3) the dispatcher returns the task(s); (4) 
the executor executes the supplied task(s) and returns 
results, including return code and optional standard 
output/error strings; and (5) the dispatcher 
acknowledges delivery. 

3.3 Performance Enhancements 
Communication costs can be reduced by task bundling 
between client and dispatcher and/or dispatcher and 
executors. In the latter case, problems can arise if task 
sizes vary and one executor gets assigned many large 
tasks, although that problem can be addressed by 
having clients assign each task an estimated runtime. 
We use client-dispatcher bundling in experiments 
described below, but (lacking runtime estimates) not 
dispatcher-executor bundling.  Another technique that 
can reduce message exchanges is to piggy-back new 



task dispatches when acknowledging result delivery 
(step 5 above). 

Using both task bundling and piggy-backing, we can 
reduce the average number of message exchanges per 
task to be arbitrarily close to zero, by increasing the 
bundle size. In practice, we find that performance 
degrades for bundle sizes of greater than 300 tasks (see 
Section 4.2)—and, as noted above, bundling cannot 
always be used between dispatcher and executors. 

With client-dispatcher bundling and piggy-backing 
alone, we can reduce the number of messages to three 
per task (one message from executor to dispatcher to 
deliver a result, one associated response from 
dispatcher to executor to acknowledge receipt and 
provide a new task, and one notification of task 
completion from dispatcher to client)—or five, if the 
clients needs to fetch task output after notification.  

3.4 Ease of Use 
We modified the Swift parallel programming system to 
use Falkon for task dispatch. The “Falkon provider” 
consisted of 840 lines of Java code, and took less than 
a day to implement. Code size is comparable to that of 
the GRAM2 provider (850 lines), GRAM4 provider 
(517 lines), and Condor provider (575 lines).   

4 Performance Evaluation 
Table 1 lists the platforms used in experiments. The 
latency between these machines was one to two 
millisecs. We assume a one-to-one mapping between 
executors and processors in all experiments.  

Table 1: Platform descriptions 
Name # of Nodes Processors Memory Network

TG_ANL_IA32 98
Dual Xeon 

2.4GHz 4GB 1Gb/s

TG_ANL_IA64 64
Dual Itanium 

1.5GHz 4GB 1Gb/s

TP_UC_x64 122
Dual Opteron 

2.2GHz 4GB 1Gb/s

UC_x64 1
Dual Xeon 

3GHz w/ HT 2GB 100 Mb/s

UC_IA32 1
Intel P4 
2.4GHz 1GB 100 Mb/s  

4.1 Throughput 
To determine maximum throughput, we measured 
performance running “sleep 0.” We ran executors on 
TG_ANL_IA32 and TG_ANL_IA32, the dispatcher on 
UC_x64, and the client generating the workload on 
TP_UC_x64. As each machine had two processors, we 
ran two executors on each machine. We measured 
Falkon’s throughput for dispatching and executing 
short tasks both without any security, and with 

authentication and encryption. We enable two 
optimizations discussed below, namely client-
dispatcher bundling and piggy-backing. However, 
every task is transmitted individually from dispatcher 
to an executor, as is each notification of success or 
failure from dispatcher to client. 

For purposes of comparison, we also tested GT4’s 
performance with all security disabled. We created a 
simple service that incremented a counter for each WS 
call made to a counter service, and measured the 
number of WS calls per second that could be achieved 
from a varying number of machines. 

Figure 2 shows results. The GT4 performance (500 
messages/sec) is an upper bound on what Falkon can 
achieve on the given hardware, given that (in the 
absence of optimizations discussed below) every 
Falkon task requires at least one WS message and one 
notification. Performance reaches between 180 and 440 
tasks/sec depending on security. These results compare 
favorably to other existing systems such as Condor 
(~2/sec) [15], Condor-J2 (~22/sec) [15], and Boinc 
(~93/sec) [19, 20]. A single Falkon executor can handle 
between seven and 28 tasks/sec depending on security 
level. 
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Figure 2: Throughput as function of executor count  

4.2 Bundling 
We measured performance for a workload of “sleep 0” 
tasks as a function of task bundle size. We see that 
performance increases from about 20 tasks/sec without 
bundling to a peak of almost 1500 tasks/sec. 
Performance decreases after around 300 tasks per 
bundle. We attribute this drop to the array data 
structure implementation in the Axis software that GT4 
uses to handle XML serialization and de-serialization. 
(Axis implements the array data-structure used to store 
the representation of the bundled tasks as a grow-able 
array, copying to a new bigger array each time its size 
increases.) We will investigate this inefficiency further 
to see if this limitation can be remedied. 
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Figure 3: Bundling throughput and cost per task 

4.3 Efficiency & Speedup  
Figures 4 and 5 show speedup (SP=T1/TP, where Tn is 
the execution time on n processors) and efficiency 
(EP=SP/P) as a function of number of executors and 
task length.  
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Figure 4: Speedup for varying task length and 

number of executors  
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Figure 5: Efficiency as a function of task length and 

number of executors 
We see that even with short tasks, we achieve high 
efficiencies and speedup. These experiments were 
conducted on TG_ANL_IA64 with no security and no 
optimizations, such as bundling or “piggy-backing.”  
We plan to redo the experiments with these 
optimizations enabled; we expect the lines to be 

significantly closer to each other, and altogether closer 
to the ideal speedup and efficiency. 

4.4 Scalability 
To test scalability and robustness, we performed 
experiments that pushed Falkon to its limits.  

Our first experiment studies Falkon’s behavior as the 
task queue increases in length. We constructed a client 
that submits two million “sleep 0” tasks to a dispatcher 
configured with a Java heap size set to 1.5GB. We 
created 32 executors on 16 machines from 
TG_ANL_IA32 and ran the dispatcher on UC_x64 and 
the client on TP_UC_x64.  

Figure 6 results show the entire run as it progressed in 
time. The solid black line is the instantaneous queue 
length, the light blue dots are raw samples (once per 
sec) of achieved throughput in terms of task 
completion, and the darker blue line is the moving 
average (over 120 sample intervals) of raw throughput. 
Average throughput was 268 tasks/sec, but was 
clustered at either around 300 tasks/sec or around 225 
tasks/sec. Note the slight increase when the queue 
stopped growing, as the client finished submitting all 
two million tasks.    

 
Figure 6: Long running test with 2M tasks 

We attribute the considerable second-by-second 
performance variations to JVM garbage collection. By 
configuring the JVM to garbage collect more 
frequently, we can potentially reduce this variation. 

In a second experiment, we tested how many executors 
the dispatcher could handle. As no system available to 
us could provide us with more than a few hundred 
physical machines, we ran multiple executors on each 
physical machine, in essence emulating a larger 
number of machines. Others [15] have used this 
experimental method with success.  

We performed our experiment on TP_UC_x64, on 
which we configured one dispatcher machine, one 



client machine, and 60 machines to run executors. We 
ran 900 executors (split over four JVMs) on each 
machine, for a total of 900x60=54,000 executors. Once 
we started up the system and all 54K executors 
registered and were ready to receive work, we started 
the experiment consisting of 54K tasks of “sleep 480” 
(8 minutes). For this experiment, we disabled all 
security, and only enabled bundling between the client 
and the dispatcher. Note that piggy-backing would 
have made no difference in this case as each executor 
only processed one task each.   

Figure 7 shows that the dispatch rate (green line) is on 
par with the submit rate. The black line shows the 
number of busy executors, going from 0 to 54K in 408 
secs. As soon as the first task finishes after 480 secs 
(that is the task length), results start to be delivered at 
the client at about the same rate as they were submitted 
and dispatched. Overall throughput (including ramp up 
and ramp down time) was about 60 tasks/sec.   
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Figure 7: Falkon scalability with 54K executors 

Figure 8 shows the per task overhead in millisec for the 
54K task experiment from Figure 7, ordered by their 
start time of each task.  

 
Figure 8: Task overhead with 54K executors 

We see that the majority of the overhead was below 
200 ms, with just a few higher than that, with a 
maximum of 1300 ms. The overhead is defined as the 

time it takes an executor to create a thread to handle 
the task, pick up a task via one WS call, perform an 
Java exec on the specified command (sleep 480), and 
send the result (the exit return code) back via one WS 
call, minus 480 secs (the task run time). Note that we 
have 900 executors on each physical machine, so this 
overhead is higher than normal as each thread was only 
getting a fraction of the processing power of the 
machine. 

4.5 Dynamic Resource Provisioning 
To study provisioner performance, we constructed a 
synthetic 18-stage workload, in which the numbers of 
tasks and task lengths vary between stages.  Figure 9 
shows the number of tasks per stage and the number of 
machines needed per stage if each task is mapped to a 
separate machine (up to a maximum of 32 machines). 
Note the exponential ramp up in the number of tasks 
for the first few stages, a sudden drop at stage 8, and a 
sudden surge of many tasks in stages 9 and 10, another 
drop in stage 11, a modest increase in stage 12, 
followed by a linear decrease for several stages, and 
finally an exponential decrease until the last stage has 
only a single task. All tasks run for 60 secs except 
those in stages 8, 9, and 10, which run for 120, 6, and 
12 secs, respectively. In total, the 18 stages have 1,000 
tasks, summing to 17,820 CPU secs, and can complete 
in an ideal time of 1,260 secs on 32 machines.  
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Figure 9: The 18-stage synthetic workload. 

We configured the provisioner to acquire at most 32 
machines from TG_ANL_IA32 and TG_ANL_IA64, 
both of which were relatively lightly loaded. (100 
machines were available of the total 162 machines.)  
We measured the execution time in six configurations:  

• GRAM+PBS: Each task was submitted as a separate 
GRAM task over PBS, without imposing any hard 
limits on the number of machines to use; there were 
about 100 machines available for this experiment.  

• Falkon-15, Falkon-60, Falkon-120, Falkon-180: 
Falkon configured to use a minimum of zero and a 



maximum of 32 machines; the allocation policy we 
used was all-at-once, and the resource release policy 
idle time was set to 15, 60, 120, and 180 secs (to 
give four separate experiments).  

• Falkon-∞: Falkon, with the provisioner configured 
to retain a full 32 machines for one hour.  

Table 2 gives, for each experiment, the average per-
task queue time and execution time, and also the ratio 
exec_time/(exec_time+queue_time). The queue_time 
includes time waiting for the provisioner to acquire 
nodes, time spent starting executors, and time tasks 
spend in the dispatcher queue. We see that the ratio 
improves from 17% to 28.7% as the idle time setting 
increases from 15 secs to 180 secs; for Falkon-∞, it 
reaches 29.2%, a value close to the ideal of 29.7%. 
(The ideal is less than 100% because several stages 
have more than 32 tasks, which means tasks must be 
queued when running, as we do here, on 32 machines.) 
GRAM+PBS yields the worst performance, with only 
8.5% on average, less than a third of ideal.  

Table 2: Average per-task queue and execution 
times for synthetic workload 

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 
(32 nodes)

Queue 
Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2
Execution 
Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution 

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%  
The average per-task queue times range from a near 
optimal 43.5 secs (42.2 secs is ideal) to as high as 87.3 
secs, more than double the ideal queue time. In 
contrast, GRAM+PBS experience a queue time that is 
15 times larger than the ideal at 611.1 secs. Also, note 
the execution time for Falkon with the resource 
provisioning (both static and dynamic) is the same 
across all the experiments, and is within 100 ms of 
ideal (which essentially accounts for the dispatch cost 
and delivering the result); in contrast, GRAM+PBS 
have an average execution time of 56.5 secs, 
significantly larger than the ideal time. This large 
difference in execution time is attributed to the large 
per task overhead GRAM and PBS have, which further 
strengthens our argument that they are not suitable for 
short tasks.   

Table 3 shows the total time to complete the 18 stages, 
the resource utilization, the execution efficiency, and 
the number of resource allocations. We define resource 
utilization as the ratio of resources used to resources 
used + resources wasted (i.e., resources consumed but 
not used for task execution), and execution efficiency 
as the ratio of ideal time to actual time.  

The resources used are the same (17,820 CPU secs) for 
all cases, as we have fixed run times for all 1000 tasks.  

As for resources wasted, we expected GRAM+PBS to 
not have any as each machine is released after one task 
is run; in reality, the measured execution times were 
longer than the actual task execution times, and hence 
the resources wasted was high in this case: 41,040 secs 
over the entire experiment. (We define task execution 
time in the GRAM+PBS case to be from the time 
GRAM sends a notification of the task changing its 
state to being “Active”—meaning that PBS has taken 
the task off the wait queue and placed into the active 
queue assigned to some physical machine—to the time 
the state changes to “Done,” at which point the task has 
finished its execution.) The average execution time of 
56.5 secs shows that GRAM+PBS is slower than 
Falkon in dispatching the task to the remote machine, 
preparing the remote machine to execute the task, and 
cleaning up and releasing the machine. Note that the 
reception of the “Done” state change in GRAM4 does 
not imply that the utilized machine is ready to receive 
another task—PBS takes even longer to make the 
machine available again for more work, which makes 
GRAM+PBS resource wastage yet worse.  

Falkon with dynamic resource provisioning fairs better 
from the perspective of resource wastage. Falkon-15 
has the least amount of wasted resources with 2032 
CPU secs, and Falkon-∞ (which never de-allocates 
nodes during the experiment) has the worst with 
22,940 CPU secs for the duration of the experiment.  

The resource utilization shows the fraction of time the 
machines were executing tasks vs. idle. Due to its high 
resource wastage, GRAM+PBS achieves a utilization 
of only 30%, while Falkon-15 reaches 89%. Falkon-∞ 
is 44%. Notice that as the resource utilization 
increases, so does the time to complete—as we assume 
that the provisioner has no foresight regarding future 
needs, delays are incurred allocating machines 
previously de-allocated due to a shorter idle time 
setting. Note the number of resource allocations 
(GRAM4 calls requesting resources) for each 
experiment, ranging from 1000 allocations for 
GRAM+PBS to less than 11 for Falkon with 
provisioning. For Falkon-∞, the number of resource 
allocations is zero since machines were provisioned 
prior to the experiment starting, and that time is not 
included in the time to complete the workload.  

If we had used a different allocation policy (e.g., one-
at-a-time), the Falkon results would have been less 
close to ideal, as the number of resource allocations 
would have grown significantly. The relatively slow 
handling of such requests by GRAM+PBS (~1/sec on 



TG_ANL_IA32 and TG_ANL_IA64) would have 
delayed executor startup and thus increased the time 
tasks spend in the queue waiting to be dispatched.  

The higher the desired resource utilization (due to 
more aggressive dynamic resource provisioning to 
avoid resource wastage), the longer the elapsed 
execution time (due to queuing delays and overheads 
of the resource provisioning in the underlying LRM). 
This ability to trade off resource utilization and 
execution efficiency is an advantage of Falkon. 

Table 3: Summary of overall resource utilization 
and execution efficiency for the synthetic workload 

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 
(32 nodes)

Time to 
complete 

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce 

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution 
Efficiency 26% 72% 75% 84% 85% 99% 100%
Resource 

Allocations 1000 11 9 7 6 0 0  
To communicate how provisioning works in practice, 
we show in Figures 10 and 11 details of experiment 
execution for Falkon-15 and Falkon-180, respectively.   
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Figure 10: Synthetic workload for Falkon-15 
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Figure 11: Synthetic workload for Falkon-180 

These figures show the instantaneous number of 
allocated, registered, and active executors over time. 
Allocated executors (blue) are those for which creation 

and registration are in progress. Creation and 
registration time can vary between 5 and 65 secs, 
depending on when a creation request is submitted 
relative to the PBS scheduler polling loop (which we 
believe occurs at 60 sec intervals). (JVM startup time 
and registration generally consume less than five secs.) 
Registered executors (red) are ready to process tasks, 
but are not active. Finally, active executors (green) are 
actively processing tasks. In summary, blue is startup 
cost, red is wasted resources, and green is useful work. 

4.6 Security Overhead 
Security requirements vary according to application 
and environment. In Figure 2, we showed that peak 
throughput declined from 440 tasks/sec without 
security to 180 tasks/sec when performing both 
authentication and encryption. We describe here an 
experiment in which a client submits 30 tasks, each 60 
secs in length, which are then dispatched in sequence 
to a single executor. We measure time from first task 
submission to last task completion. The experiment is 
similar to one reported for MyCluster [11]. We ran all 
processes on TG_ANL_IA32 processors, and disabled 
all optimizations such as bundling or piggy-backing. 

This kind of a workload is generally going to produce 
the highest overhead as the entire experiment is 
serialized, and there is no opportunity for the 
dispatcher to overlap computation and communication.  

Table 4 summarizes performance for the various 
security levels. Falkon took 1803.46 secs to run this 30 
task workload without any security. The ideal time 
with no overhead would have been 30x60 = 1800 secs, 
so we computed our overhead to be 3.46 secs or 
0.19%. The highest level of security we have available 
in GT4 is authentication + encryption, which surpasses 
the security level used in the MyCluster experiment 
using just authentication. The MyCluster overhead 
ranged from 5% to 25% depending on which 
underlying scheduling technology they used (Condor 
or SGE respectively). Our overhead is substantially 
lower, with overheads ranging from 0.30% to 0.96% 
for the various security mechanisms. 

Table 4: Falkon overhead for various security levels  
Exec Time 

(sec)
Exec 

Overhead %

Ideal Tasks Execution 1800.00 0.00%
No Security 1803.46 0.19%

GSI Transport 
(Authentication + Encryption) 1817.37 0.96%

GSI Secure Conversation 
(Authentication + Encryption) 1815.58 0.87%  



5 Application Experiments 
We have integrated Falkon into the Karajan [2, 3] 
workflow engine, which in term is used by the Swift 
parallel programming system. Thus, Karajan and Swift 
applications can use Falkon without modification. 
Using Falkon in this way, we demonstrated reductions 
in end-to-end run time by as much as 90% when 
compared to traditional approaches in which the 
applications used the batch schedulers directly. 

Swift has been applied to a variety of science 
applications in disciplines such as physical sciences, 
biological sciences, social sciences, humanities, 
computer science, and science education. Table 5 
characterizes some applications in terms of the typical 
number of tasks and the number of stages. 

Table 5: A list of potential applications that could 
benefit from the use of Falkon 

Application #Jobs/workflow #Levels
ATLAS: High Energy Physics Event Simulation 500K 1

fMRI DBIC: AIRSN Image Processing 100s 12
FOAM: Ocean/Atmosphere Model 2000 3

GADU: Genomics 40K 4
HNL: fMRI Aphasia Study 500 4

NVO/NASA: Photorealistic Montage/Morphology 1000s 16
QuarkNet/I2U2: Physics Science Education 10s 3 ~ 6

RadCAD: Radiology Classifier Training 1000s 5
SIDGrid: EEG Wavelet Processing, Gaze Analysis 100s 20

SDSS: Coadd, Cluster Search 40K, 500K 2, 8  
We illustrate the distinctive dynamic features in Swift 
using an fMRI [21] analysis workflow from cognitive 
neuroscience, and a photorealistic montage application 
from the national virtual observatory project [32, 22]. 

5.1 Functional Magnetic Resonance Imaging 
This medical application is a four-step pipeline [21]. 
An fMRI Run is a series of brain scans called volumes, 
with a Volume containing a 3D image of a volumetric 
slice of a brain image, which is represented by an 
Image and a Header. We ran this application for four 
different problem sizes, ranging from 120 volumes 
(480 tasks for the four stages) to 480 volumes (1960 
tasks). Each task can run in a few secs on a 
TG_ANL_IA64 processor. 

We compared three implementation approaches: task 
submission via GRAM+PBS, a variant of that 
approach in which tasks are clustered into eight groups, 
and Falkon with a fixed set of eight executors. In each 
case, we ran the client on UC_IA32 and application 
tasks on TG_ANL_IA64.  

In Figure 12 we show execution times for the different 
approaches and for different problem sizes. Although 
GRAM+PBS could potentially have used up to 62 
nodes, it performs badly due to the small tasks. 
Clustering reduced execution time by more than four 

times on eight processors. Falkon further reduced the 
execution time, particularly for smaller problems. 
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Figure 12: Execution Time for the fMRI Workflow 

5.2 Montage Image Mosaicing 
Montage generates large astronomical image mosaics 
by composing multiple small images [32, 22]. A four-
stage pipeline reprojects each image into a common 
coordinate space; performs background rectification 
(calculates a list of overlapping images; computes 
image difference between each pair of overlapping 
images; and fits difference images into a plane); 
performs background correction; and co-adds the 
processed images into a final mosaic. (To enhance 
concurrency, we decompose the co-add into two steps.) 

We considered a modest-scale computation that 
produces a 3°x3° mosaic around galaxy M16. There 
are about 440 input images and 2,200 overlapping 
image sections between them. The resulting task graph 
has many small tasks. 

Figure 13 shows execution times for three versions of 
Montage:  
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Figure 13: Execution time for Montage application  

Swift with clustering, submitting via GRAM+PBS; 
Swift submitting via Falkon; and an MPI version 



constructed by the Montage team. The second co-add 
stage was only parallelized in the MPI version; thus, 
Falkon performs poorly in this step. Both the GRAM 
and Falkon versions staged in data, while the MPI run 
assumed data was pre-staged. Despite these 
differences, Falkon achieved performance similar to 
that of the MPI version. 

Deelman et al. have also created a task-graph 
implementation of the Montage code, using Pegasus 
[33]. They do not implement quite the same application 
as us: for example, they run two tasks (mOverlap and 
mImgtlb) on the portal rather than on compute nodes, 
they combine what for us are two distinct tasks (mDiff 
and mFit) into a single task, mDiffFit, and they omit 
the final mAdd phase. Thus, direct comparison is 
difficult. However, if the final mAdd phase is omitted 
from the comparison, Swift+Falkon is faster by about 
5% (1067 secs vs. 1120 secs) when compared to MPI, 
while Pegasus is reported as being somewhat slower 
than MPI. We attribute these differences to two factors: 
first, the MPI version performs initialization and 
aggregation actions before each step; second, Pegasus 
uses Condor glide-ins, which are heavy-weight relative 
to Falkon. 

6 Future Work 
We plan to implement and evaluate enhancements, 
such as task pre-fetching, alternative technologies, data 
management, and three-tier architecture.  

Pre-fetching: As is commonly done in manager-
worker systems, executors can request new tasks 
before they complete execution of old tasks, thus 
overlapping communication and execution. 

Technologies: Performance depends critically on the 
behavior of our task dispatch mechanisms; the number 
of messages needed to interact between the various 
components of the system; and the hardware, 
programming language, and compiler used. We 
implemented Falkon in Java and use the Sun JDK 1.4.2 
to compile and run Falkon. We use the GT4 Java WS-
Core to handle Web Services communications.   

One potential optimization is to rewrite Falkon in 
C/C++, (using, for example, the Globus Toolkit C WS-
Core). Another is to change internal communications 
between components to a custom TCP-based protocol. 
However, dispatch rates are adequate for applications 
studied to date, and the primary obstacle to scaling is 
likely to be data access, not task dispatch. 

Data management: Many Swift applications read and 
write large amounts of data. Applications typically 
access data from a shared data repository (e.g., NFS, 

GPFS, GridFTP, web server). Thus, data access can 
become a bottleneck as applications scale. We expect 
that data caching, proactive data replication, and data-
aware scheduling can offer significant performance 
improvements for applications that have locality in 
their data access patterns.  We plan to implement data 
caching mechanisms in Falkon executors, which would 
allow executors to populate local caches with data the 
corresponding task would require. 

In conjunction with data caching we may wish to 
implement a data-aware dispatcher. We will evaluate 
to what extent data aware dispatching reduces 
performance. A user can choose which dispatcher and 
executor to use for a specific application.. 

3-Tier Architecture: Falkon currently requires that 
the dispatcher and client can each send messages to the 
other. Thus, each must have at least one port open in 
their firewall. We have implemented a polling 
mechanism to bypass firewalls on executors or clients, 
but we loose this performance and scalability port open 
in the firewall on which it will accept WS due to the 
polling mechanism vs. the notification mechanisms. 
Note that the dispatcher is still required to receive 
messages from clients and executors. 

Falkon also currently assumes that executors operate in 
a public IP space, so that the dispatcher can 
communicate with them directly. If (as is sometimes 
the case) a cluster is configured with a private IP space, 
to which only a head node has access, the Falkon 
dispatcher must run on that head node. This 
organization prevents the use of multiple such clusters. 
A potential solution to this problem is to introduce 
intermediate “forwarder” nodes that would act to pass 
messages between dispatcher and executors.  

7 Conclusions 
The schedulers used to manage parallel computing 
clusters are not typically configured to enable easy 
configuration of application-specific scheduling 
policies. In addition, their sophisticated scheduling 
algorithms and feature-rich code base can result in 
significant overhead when executing many short tasks.  

Falkon, a Fast and Light-weight tasK executiON 
framework, is designed to enable the efficient dispatch 
and execution of many small tasks. To this end, it uses 
a multi-level scheduling strategy to enable separate 
treatment of resource allocation (via conventional 
schedulers) and task dispatch (via a streamlined, 
minimal-functionality dispatcher). Clients submit task 
requests to a dispatcher, which in turn passes tasks to 
executors. A separate provisioner is responsible for 
creating and destroying provisioners in response to 



changing client demand; thus, users can trade off 
application execution time and resource utilization. 
Bundling and piggybacking optimizations can reduce 
further per-task dispatch cost. 

Microbenchmarks show that Falkon can achieve one to 
two orders of magnitude higher throughput (440 
tasks/sec) when compared to other batch schedulers. It 
can sustain high throughput with up to 54,000 
managed executors and can process 2,000,000 tasks 
over a two hour period, operating reliably even as the 
queue length grew to 1,300,000 tasks.  

A “Falkon provider” allows applications coded to the 
Karajan workflow engine and the Swift parallel 
programming system to use Falkon with no 
modification. When using Swift and Falkon together, 
we demonstrated reductions in end-to-end run time by 
as much as 90% for applications from the astronomy 
and medical fields, when compared to the same 
applications run over batch schedulers.  
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