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Abstract: Template-based methods for predicting protein structure provide models for a significant

portion of the protein but often contain insertions or chain ends (InsEnds) of indeterminate

conformation. The local structure prediction ‘‘problem’’ entails modeling the InsEnds onto the rest of
the protein. A well-known limit involves predicting loops of �12 residues in crystal structures.

However, InsEnds may contain as many as ~50 amino acids, and the template-based model of the

protein itself may be imperfect. To address these challenges, we present a free modeling method for
predicting the local structure of loops and large InsEnds in both crystal structures and template-

based models. The approach uses single amino acid torsional angle ‘‘pivot’’ moves of the protein

backbone with a Cb level representation. Nevertheless, our accuracy for loops is comparable to
existing methods. We also apply a more stringent test, the blind structure prediction and refinement

categories of the CASP9 tournament, where we improve the quality of several homology based

models by modeling InsEnds as long as 45 amino acids, sizes generally inaccessible to existing loop
prediction methods. Our approach ranks as one of the best in the CASP9 refinement category that

involves improving template-based models so that they can function as molecular replacement

models to solve the phase problem for crystallographic structure determination.

Keywords: long loops; insertions; loop modeling; local protein structure prediction; molecular

replacement

Introduction
Homology-based methods use known structures as templates and have proven extremely successful in model-

ing larger proteins in a computationally efficient fashion. The success of these methods, however, depends on

the quality of the alignments between the target sequence and those of the templates.1 Frequently, the

Abbreviations: aa, amino acid; MCSA, Monte Carlo simulated annealing; NN, nearest neighbor; Rama, Ramachandran, SASA, sol-
vent accessible surface area.

Additional Supporting Information may be found in the online version of this article.

Grant sponsor: NIH; Grant numbers: GM081642, GM55694; Grant sponsor: The University of Chicago-Argonne National Laboratory
Seed Grant Program, U.S. Department of Energy; Grant number: DE-AC02-06CH11357; Grant sponsor: NSF; Grant numbers: OCI-
721939, OCI-0944332, OCI-1007115; Grant Sponsor: NSF; Grant number: DBI-0960390

*Correspondence to: Prof. Tobin R. Sosnick, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics,
Computation Institute, The University of Chicago, Chicago, Il 60637. E-mail: trsosnic@uchicago.edu or Prof. Karl F. Freed,
Department of Chemistry, The James Frank Institute, Computation Institute, The University of Chicago, Chicago, Il 60637. E-mail:
freed@uchicago.edu

Published by Wiley-Blackwell. VC 2011 The Protein Society PROTEIN SCIENCE 2012 VOL 000:000—000 1



sequence alignments contain gaps that correspond to

regions in the sequence where no reliable structural

information can be extracted from the templates.

These gaps may be insertions or additions at the ter-

mini (Fig. 1). Inevitably, the model assembled from

the templates lacks these local regions. In order to

model the entire structure, alternative methods are

required. The problem of reconstructing local regions

in a protein is neither new nor exclusive to homol-

ogy modeling. Experimentally determined structures

from crystallography often contain regions that are

difficult to characterize, because they are flexible or

mobile. Consequently, crystal structures can contain

loops that have weak or missing electron density.

This issue is particularly significant because protein

function is often mediated by loops; for example,

loops often act as molecular recognition or binding

sites and play a crucial role in executing the pro-

tein’s function.2–4 The specificity of protein interac-

tions as mediated by active sites and binding pockets

is also a consequence of local protein structure.

These issues highlight the need for reliable methods

to reconstruct local regions in protein structures.

Three important problems arise in developing

methods for predicting local spatial structure. First,

the local regions must be modeled subject to the con-

straints imposed by the rest of the protein structure.

For example, the loop termini must end at the cor-

rect anchor positions. Some approaches to this long-

standing ‘‘loop closure problem’’ seek analytical solu-

tions to bond angles that properly position the

ends.5–7 Although exact solutions have been found

for short polypeptide segments, no general analytical

solution is possible for segments containing more

than a few amino acids in proteins. Other robotics-

inspired algorithms for loop closure8,9 likewise expe-

rience decreasing accuracy as the size of the loops

increases. Additionally, analytical approaches to the

closure problem very often yield solutions that place

backbone dihedral angles in disallowed regions of

Ramachandran (Rama) space and thus generate

sterically forbidden conformations.

Second, irrespective of how the loop closure is

performed, a procedure is required for sampling var-

ious conformations of the local region. Existing

approaches for predicting local regions in protein

structures can be broadly categorized into two

classes: database and de novo (free modeling) meth-

ods.10,11 Database methods search for loop fragments

that best match the anchor geometries,10,12 but

these approaches usually are confined to short inser-

tions because of poor database coverage for larger

fragments. Although these methods tend to be fast,

the speed comes at the cost of the greater flexibility

in exploring the conformational space of the loops

permitted by free modeling methods. The applicabil-

ity of these methods is further challenged in the

modeling of InsEnds in template-based models

because the regions are likely to correspond to parts

of the sequence that are inaccessible to the homology

methods.

In contrast, de novo methods sample sterically

feasible loop conformations that are scored with

physics-based or statistical potentials. For example,

MODELLER places loop atoms uniformly between the

anchor positions and optimizes the atom positions

Figure 1. The InsEnds modeling problem. A multiple sequence alignment of a target sequence to template sequences can

contain insertions at the same location. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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using conjugate gradient and molecular dynamics

with simulated annealing, scoring the loops using a

combination of the CHARM22 force field and statisti-

cal preferences of the dihedral angles and atom con-

tacts.13 Other free modeling methods such as RAP-

PER14 and PLOP15 build loop fragments by sampling

from a dihedral angle library for each residue, begin-

ning from one or both anchors and eventually

attempting to close the loop while avoiding steric

clashes.

The third challenge is associated with the scor-

ing of various conformations. Because the number of

residues whose conformation varies between the dif-

ferent structural candidates is small, accurate

energy functions can be crucial to guide the confor-

mational search and score the final structures. Both

statistical potentials16 and physics-based force

fields14 have been used as scoring functions in loop-

building. Some methods use statistical potentials

only for filtering, while the final ranking uses all

atom force fields.17 Other methods focus on all atom

energy functions designed specifically for loop model-

ing.18,19 However, energy functions that are good at

guiding the conformational search during the loop-

building stage might be inadequate for the final

ranking of the decoys, especially in methods where

the loop building is performed incrementally and

separately from closure.

Until recently, investigations of local protein

structure have largely centered on predicting loops

in defined crystal structures. However, InsEnds pre-

dictions are made in the context of template-based

models where the structures for the remainder of

the protein may be imperfect, being constructed

from one or more crystal structures and relying on a

sequence alignment. As a result of this imperfection,

the structure prediction algorithm must be lenient,

thereby fundamentally distinguishing this problem

from traditional loop modeling.

Although the treatment of both loops and

InsEnds involve local protein modeling, they can pres-

ent different sets of challenges. Whereas loops in crys-

tal structures are defined as regions connecting differ-

ent secondary structure elements, InsEnds are

defined as regions devoid of information extracted

from sequence alignments. Hence, InsEnd may

include regions with complete secondary structure

elements. In addition, the length of loops is governed

by the structural context, and, consequently, the loops

usually contain a limited number of residues.

InsEnds, on the other hand, can be of arbitrary

lengths. Furthermore, the boundaries of loops are

generally well defined whereas the boundaries of

InsEnds are determined by the gaps in the align-

ments. When multiple templates are combined to gen-

erate one model, the gap regions may appear with dif-

ferent boundaries in different templates, thereby

rendering the InsEnds boundaries ambiguous.

Our method is designed to address these issues.

We demonstrate the robustness of our methods by

successfully predicting the structures of long loop

regions in crystal structures as well as providing

blind structural predictions of InsEnds in the top

homology models from our submissions to CASP9.

We present a fragment free method for local struc-

ture prediction.

Approach
Our approach assumes that the principles governing

the folding of proteins are equally applicable for mod-

eling InsEnds. We have shown that single backbone

(/,w) pivot moves provide an effective way to sample

conformations, provided the moves are contingent

upon the identities and conformations of the nearest

neighbors (NNs). These moves have been used suc-

cessfully in the fragment-free de novo prediction of

the structures of single-domain proteins.20,21

Our local structure prediction method generates

random local conformations using the same single

pivot (/,w) move set as for our global structure pre-

diction scheme (Fig. 2). The interaction energy is

calculated both within the local regions and between

the local region and the rest of the protein. The total

energy is used to guide the conformational search,

an approach that differs from many methods in

Figure 2. Local structure prediction algorithm. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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which the loop fragment is constructed one residue

at a time while simultaneously trying to satisfy the

loop closure constraint at the end. In contrast to

some existing methods that separate loop building

and closure into two subsequent stages, our

approach integrates the two into a single Monte

Carlo simulated annealing (MCSA) scheme, thus

retaining the tertiary context of the entire protein

during the simulation while attempting to rapidly

find the best local conformation. This tertiary con-

text can be critical for identifying crucial loop–pro-

tein interactions, thus greatly reducing the search

space. The algorithm is designed to handle multiple

loops in the same MCSA trajectory. Hence, when

two loops are close enough to interact, they are mod-

eled simultaneously.

The conformational search proceeds by using an

MCSA scheme (described in detail in the Methods

section), guided by a combination of the pair wise

additive, orientationally dependent statistical poten-

tial DOPE-PW, along with a harmonic ligation

energy term to close the loop (Figure 3). The relative

weight of the ligation energy increases during the

MCSA to enforce loop closure. Explicit side chains

are absent during the sampling stage of the simula-

tion since the DOPE-PW statistical potential and

backbone torsional move set implicitly incorporates

sufficient information concerning the side groups.20

Final conformations are scored using a combination

of structural clustering and accessible surface area

of the hydrophobic residues to select the best solu-

tions. The standard deviation in the positions of a

given loop residue in a cluster (i.e., the tightness of

the cluster) provides a metric for assessing the local

quality of the predictions for the loop.

Results and Discussion

Three different modeling scenarios are considered.

First, we address the traditional loop modeling prob-

lem in crystal structures where the structure sur-

rounding the loop is known. We next address InsEnds

modeling as applied in the CASP9 blind prediction

competition, where the InsEnds are as large as 45 aa

regions in template-based models generated by Xu’s

RAPTOR-X algorithm.22 The third scenario is for the

CASP9 refinement category in which the InsEnds

algorithm is applied to the best structure from the

server predictions and where the starting model and

boundaries are specified by the organizers.

Loops in crystal structures

In order to demonstrate the applicability to larger

loops in crystal structures, 26 loops of lengths 8–12

have been randomly selected from standard loop

benchmarking studies.15 Loop boundaries for each tar-

get are taken as previously specified, and the loops are

modeled using our method. Figure 4 illustrates the

process of selecting the top five predictions, and Table

I presents the best and the remaining four top predic-

tions. After the predictions are clustered according to

the RMSD between the loop structures, the largest

five clusters are ranked using a linear combination of

the Z-scores for the cluster tightness (RMSD between

structures in the cluster), size, and average DOPE-PW

energy, defined as Zt, Zs, and ZE, respectively,

Cluster Score ¼ Zs � Zd � Zt; Zi ¼
Xi� < Xi >

ri

where the Z-score for the property of structure X, is

Zi ¼ (Xi � <Xi>)/ri, and <Xi> and ri are the mean

Figure 3. The ligation terms close the loop. Constraints are placed on the distance between the two ends of the loop and

the distance between the free end of the loop and the anchor residue. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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and standard deviation, respectively. After ranking

the clusters, one representative from each cluster is

selected by using a combination of the DOPE-PW

energy and the SASA to obtain the top five predic-

tions. Although DOPE-PW is very successful in guid-

ing the protein backbone into a proper conformation

based on the orientation of the Ca–Cb vectors, it is

unable to resolve the details of solvation at an atom-

istic level because it is parameterized only at the Cb

level. Hence, explicit SASA calculations are neces-

sary to properly account for the solvation energy.

As discussed in the Methods section, the SASA

scores are determined from a combined ranking of

the hydrophilic and hydrophobic ASAs. Similarly,

the structures are ranked by using the DOPE-PW

energy function as well. The structure with the low-

est total DOPE-PW þ SASA rank in a given cluster

is taken as the predicted structure from that cluster.

Models are discarded when the distance between the

free end and the anchor point fails to return to

within 1.5 Å of the initial distance. If the largest

cluster contains less than 5% of the structures, the

scoring for the top five candidates uses only the sum

of DOPE-PW and SASA scores. As shown in Sup-

porting Information Figure 1, the inclusion of SASA

to the DOPE-PW energy improves the selection of

the top structure in most cases compared with sim-

ply using DOPE-PW energy to select the top

structure.

A residue-specific deviation quantifies the local

confidence score of the prediction for each residue

individually in each of the top five predictions. The

local confidence scores are illustrated by color and

thickness in Figure 4. The thicker (redder) portions

in the predicted local region correspond to residues

displaying the largest deviation within the cluster.

The simulations for loops of length 12 and 8–11

residues generate conformations with global loop

RMSDs of 2.76 and 1.93 Å, respectively, where the

RMSD is calculated for the loop residues after align-

ing the structures without the loop regions (Table

II). These results can be compared with Table II of

Figure 4. Selection of the top 5 loop predictions for 1xnb. After clustering, the largest 5 clusters are ranked based on Z-

scores with respect to cluster tightness, size, and average DOPE-PW energy. Once ranked, a selection is made from each of

the 5 clusters using DOPE-PW þ SASA. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Lee et al.,8 which presents the minimum backbone

RMSDs found using different existing loop sampling

protocols. Simulations for 12 and 8 residue loops in

crystal structures with the cyclic coordinate descent

(CCD) protocol9 generates minimum RMSDs of 3.05

and 1.59 Å, the CJSD8 method obtains 2.34 and 1.01

Å, the self organizing algorithm using an alternating

scheme of pairwise distance adjustments (SOS)23

yields 2.29 and 1.19 Å and the FALC8 scheme finds

1.84 and 0.78 Å, respectively.

The average RMSDs of our top ranked predicted

loops are 3.98 and 3.13 Å for loops with 12 and 8–11

amino acids, respectively (Table II). These results

are comparable to those from two different methods,

RAPPER14 and FALC,8 ranked by DFIRE16 as listed

in Table IV in Lee et al.,8 where the average RMSDs

of the top ranked 12 residue loop decoys for RAP-

PER and FALC are 4.32 and 3.84 Å, respectively.

Rossi et al.24 compare four commercial loop modeling

packages—Prime (Schrödinger, LLC), MODELLER

(Accelrys Software), ICM (Molsoft, LLC), and Sybyl

(Tripos)—which obtain RMSD values ranging from 3

to 5 Å for loops with 10–12 amino acids. Our per-

formance is comparable to these methods.

We also compare our results to a recent atomic

level loop modeling study which has sub-angstrom

level accuracy.25 Although our Cb level modeling cer-

tainly limits us in terms of obtaining sub-angstrom

models, we still are able to obtain models for some of

the same benchmark proteins that are better than

or comparable to the high-resolution Kinematic Clo-

sure (KIC) protocol (Supporting Information Table 1

in Ref. 26). For instance, our top predicted model for

1hfc with 3.69-Å RMSD outperforms KIC’s 8.2 Å

prediction for the same loop. Similarly, our top pre-

dictions for the other targets 4i1b, 1msc, 1cyo, and

1pmy from our benchmark set in Table I yield

RMSDs of 2.03, 5.5, 2.47, and 2.97 Å that are better

or comparable to the high resolution KIC method’s

top predictions of 3.8, 3.2, 5.2, and 2.6 Å,

Table II. Statistics for Loops in Crystal Structures

Length

Local loop RMSD (Å) Global loop RMSD (Å)

Best Pred1 Best Pred1

Average Stdev Average Stdev Average Stdev Average Stdev

12 1.59 0.62 2.80 0.85 2.76 1.14 3.98 1.3
8–11 1.31 0.54 1.97 1.09 1.93 0.93 3.13 1.74

Table I. Prediction of Loops of 8–12 Residues in Crystal Structures

Target Loop length

Local loop RMSD (Align Loop, RMSD loop) Global loop RMSD (Align rest, RMSD loop)

Best Pred1 Pred2 Pred3 Pred4 Pred5 Best Pred1 Pred2 Pred3 Pred4 Pred5

1rcf 12 1.81 2.67 3.39 3.27 3.38 2.79 2.61 3.79 5.29 4.63 4.64 4.53
1thw 12 1.84 4.61 2.4 4.53 5.94 5.87
2cpl 12 1.09 1.09 4.14 4.02 4.72 4.37 2.43 2.43 6.34 6.94 6.84 8.37
1cyo 12 0.75 1.97 3.46 1.67 3.94 5.11 1.23 2.47 4.95 4.09 5.15 7.03
1hfca 12 1.91 2.08 2.42 3.38 3.06 3.39 3.69 3.69 4.58 5.6 4.29 7.01
1onc 12 2.19 3.24 2.19 2.95 2.94 2.99 2.91 3.83 5.26 5.36 5.66 5.22
1pmy 12 0.57 2.47 1.79 2.28 2.64 3.79 1.24 2.97 3.13 2.98 4.07 7.02
1rro 12 1.84 2.65 2.98 3.79 2.83 2.82 4.63 6.94 7.78 8.44 6.52 7.34
1scs 12 2.27 3.48 5.2 4.91 3.1 4.22 7.87 6.95
1bkf 12 1.55 2.26 2.55 2.9 2.69 2.35 2.48 3.37 4.82 6.82 4.85 3.98
2tgi 12 2.44 2.85 3.35 3.35 3.48 3.22 3.64 4.19 5.32 5 4.66 4.33
1eco 12 0.52 3.43 3.85 5.09 4.16 4.12 0.85 2.65 3.01 1.99 3.45 3.09
1msc 12 1.96 3.64 5.08 3.57 3.96 5.17 2.57 5.5 7.3 11.9 12.6 7.9
1acf 11 1.8 2.05 3.59 3.52 3.88 2.22 2.34 2.86 4.21 4.09 4.41 3.19
1cid 11 1.16 1.17 2.19 1.65 3.34 3.32 1.39 1.83 3.16 2.17 5.47 4.83
1noa 11 1.68 4.14 4.35 4.7 3.43 4.35 2.59 7.22 6.7 8.3 6.51 7.7
1plca 11 1.8 2.05 2 1.8 4.59 1.84 3.42 3.42 4.89 4.08 8.35 3.57
1xnb 11 0.91 1.62 2.67 3.3 2.72 3.17 1.39 2.41 3.42 4.45 3.67 4.6
4i1b 11 1.17 1.13 3.72 3.64 3.11 2.03 2.03 9.71 10.3 10.83
8dfra 11 1.71 1.71 2.04 3.2 3.85 2.96 2.89 2.89 4.79 6.19 6.37 6.39
1aaj 11 1.71 2.5 2.69 2.81 3.14 2.62 2.79 3.59 4.66 5.9 7.08 6.03
5p21 10 1.74 2.78 2.99 2.47 2.67 2.38 2.62 4.27 3.87 3.24 3.94 3.71
5fx2 10 1.93 2.79 3.42 2.3 3.77 3.92 2.29 3.23 3.55 2.6 5.32 4.7
1cbs 8 0.74 3.65 0.74 1.74 5.41 1.74
1xnb 8 0.28 1.49 1.21 0.53 1.16 1.13 0.77 3.53 1.83 0.85 1.86 1.94
1poa 8 0.44 0.54 0.97 1.01 3.94 2.71 0.76 1.23 2.1 1.59 5.56 4.84

a Cases where the top cluster contain less than 5% of the total structures. In those cases, the top 5 predictions are selected
using DOPEPWþSASA instead; units are in Å.The bold font indicates the best out of the top five predictions.
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respectively, for the same 10–12 amino acid loops.

The results demonstrate that a Cb level representa-

tion of the protein chain without a costly analytical

closure constraint is sufficient to achieve accuracy

comparable with existing methods for relatively long

loops in the context of crystal structures.

Ends in crystal structures

Another challenge involves modeling the termini of

protein structures, a challenge that has attracted

only limited study.27,28 Unlike loops, end regions

require no loop closure. To demonstrate that our

method is also applicable to end regions, we have

refolded the termini for six proteins (Table III). In

each of the case, 20 residues in the C terminal end

of the native proteins are first randomized while the

rest of the structure is kept fixed. Starting from

these pseudo-random structures, the end residues

are sampled and clustered using the loop modeling

protocol. Because no loop closure is required, the ter-

mini are folded using only the DOPE-PW energy

function.

In three out of six cases (1af7, 1o2f, 1r69), the

best and the predicted structures have a global

RMSD of under 3 Å (Table III), with the best local

RMSD under 5 Å. Although direct comparisons are

unavailable for the same proteins, the results are

comparable to another method28 for refolding of ter-

minal secondary structures where the average

RMSDs of 4.6 and 2.0 Å are obtained for 10–23 resi-

due ends after three minimizations using the DFIRE

and dDFIRE energy functions. We select the last 20

residues in each of the proteins for modeling irre-

spective of where the secondary structure bounda-

ries lie. This protocol better mimics the situation

encountered in authentic template-based modeling

where the number of unknown residues that require

modeling is determined by the gaps in the sequence

alignment and where reliable information about sec-

ondary structure type or boundaries is often

unavailable.

CASP9 blind InsEnds predictions
Methods designed for predicting the structure of in-

ternal loops may be inappropriate for termini of pro-

teins because the energy functions and sampling

generally used for loop modeling assume both ends

are fixed. Furthermore, InsEnds can encompass

whole secondary structure elements. The existing

loop modeling methods have been benchmarked for

loops in crystal structures where the remaining

structure and loop boundaries are known. The situa-

tion for homology modeling, however, is more com-

plex, being highly dependent on the quality of the

sequence alignments, template identification, and

boundary determination. Consequently, the starting

point for InsEnds modeling is imperfect and inexact.

The biannual CASP experiments present a

unique platform for testing new and benchmarking

developed methods through blind predictions. Our

Table IV. Blind InsEnds Prediction of Refinement Targets in CASP9

CASP9 refinement
target

GDT
starting

RMSD
starting

GDT
MidwayFolding

RMSD
MidwayFolding

Rank of
MidwayFolding

TR569 73.1 3.01 76.58 2.249 4/121
TR568 53.35 6.963 56.7 5.108 6/127
TR517 71.38 4.646 72.17 4.638 11/119
TR622 67.42 7.47 69.47 5.773 12/120
TR606 71.95 4.85 72.56 3.915 19/128
TR594 87.32 1.805 86.07 1.957 23/134
TR567 78.34 3.435 78.52 3.46 28/107
TR557 67.6 4.074 68.2 3.74 28/118
TR614 75.21 4.1 67.36 4.895 43/118
TR624 54.71 5.529 52.9 5.577 47/122
TR592 91.43 1.204 82.38 3.415 111/131
TR576 48.91 10.926 Ignored since initial GDT<50

The numbers reported are the GDT and RMSD values from the CASP9 website. The values in bold indicate targets with
an improvement in the GDT score from the starting model.

Table III. Prediction of 20 End Residues in Crystal Structures

Target Type Ends length

Local ends RMSD (Align Ends, RMSD Ends) Global ends RMSD (Align rest, RMSD Ends)

Best Pred1 Pred2 Pred3 Pred4 Pred5 Best Pred1 Pred2 Pred3 Pred4 Pred5

1af7 a 20 1.33 2.36 2.21 3.74 3.8 3.07 2.24 2.24 3.8 4.36 5.58 5.42
1o2f ab 20 1.76 2.01 3.26 3.06 3.07 4.72 2.37 2.80 5.94 4.04 4.29 11.9
1mky ab 20 3.47 3.82 4.6 3.71 4.3 4.15 4.11 5.68 5.58 7.78 9.66 8.72
1b72 a 20 4.06 5.08 4.95 4.69 5.19 5.11 5.2 5.8 6.71 5.6 6.75 6.15
1r69 a 20 2.17 2.50 3.28 7.46 8.04 8.08 2.72 2.99 5.04 8.35 9.6 8.34
1tif ab 20 4.85 5.50 8.75 9.38 9.19 9.68 6.31 7.02 10.6 12.1 11.5 11.6

Adhikari et al. PROTEIN SCIENCE VOL 000:000—000 7



participation in CASP9 as MidwayFolding (groups

TS435 and TS477) focused on testing our local struc-

ture prediction method and on improving poorly pre-

dicted local regions in template-based models. Our

analysis begins with models generated by the pro-

gram RAPTOR-X, which utilizes homology to iden-

tify template structures appropriate to a target

sequence through sophisticated sequence/structure

alignments. The templates are processed by MOD-

ELER to generate our starting model. We also use

the sequence alignments of RAPTOR-X to identify

the InsEnds regions in the models. Five entries may

be submitted to CASP9 for each target, and Figure 5

displays the best of the five blind models submitted

to CASP9 for each target.

The CASP9 targets serve to illustrate several

strengths of our method. Several of the insertion

regions contain secondary structure elements in the

targets. The target T0464 from CASP8 presents a

case where the insertion region is a helix, which our

method predicts correctly, improving the model’s

RMSD from 9.6 to 4.5 Å, as exhibited in Figure 5(A).

Another target, T0623 has a 25-residue gap in a

region that is, in fact, a hairpin that is correctly pre-

dicted by our method as well (8.2-Å RMSD improved

to 6.3 Å).

The largest InsEnds contains 45 residues

(T0585), and the RAPTOR-XþMODELER programs

describe them as a large loop. Our method correctly

identifies that the missing region corresponds to

three helices that pack into the protein core, thereby

improving the model substantially from 15.1 to 9.1 Å

overall RMSD as depicted in Figure 5(H). The target

TR606 presents an example where the local model-

ing is performed for both termini simultaneously to

form a pair of beta strands, thereby improving the

overall RMSD from 4.9 to 3.8 Å for the target as a

result of modeling the ends [Fig. 5(G)].

Other CASP targets contain InsEnds that are

loops connecting different secondary structures. For

instance, the targets T0520, T0594, and T0612 yield

initial models with loops containing as many as 17

residues (identified from the gap boundaries in the

sequence alignments). Use of our InsEnds protocol

for these three loop regions improves the overall

RMSDs from 3.2 ! 2.6 Å, 2.2 !1.7 Å and 7.3 ! 6.6

Å for T0520, 594, and 612, respectively [Fig. 5(C,D)].

The demonstration that we successfully model vari-

ous types of InsEnds with the same protocol without

any prior knowledge of whether they are loops or

contain secondary structure elements highlights the

robustness of the method.

Blind prediction of refinement targets in CASP9

The judges for the refinement category in the CASP

experiment select the best of all submitted (tem-

plate-based) models from all participating groups.

The local regions that deviate most from the native

structure are identified to the predictors as the

refinement targets. From our perspective, the

Figure 5. CASP9 Ins&Ends blind predictions. Numbers indicate improvement from MODELER (Red) to our model (blue),

when compared with the native structure (green) after modeling the regions enclosed by the boxes. RMSD changes are for

the whole structure.
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refinement category is distinct because the starting

model is guaranteed to be the best of the all CASP

server models rather than one of RAPTOR-X’s model

and because the boundaries for InsEnds are speci-

fied based on where the server model differs from

the native structure (as identified by the organizers)

rather than from RAPTOR-X’s sequence alignment.

On average for the 12 refinement targets, the

24 different refinement methods in CASP8 yield no

net improvement over the starting models.29 Table

IV lists the RMSD as well as the Global Distance

Test (GDT) changes from the starting models along

with the ranking of our method with respect to all

the other refinement methods. Our method proceeds

by first initializing the InsEnds regions to a com-

pletely random conformation, so that no structural

information about the InsEnds is retained from the

starting model.

Unlike the RMSD which relies on a single align-

ment, the GDT scores reflect the structural similar-

ities at different distance cutoffs and, therefore, are

generally better at assessing improvements in local

regions.30 We have attempted 11 targets for refine-

ment in CASP9 (Fig. 6) and improve the GDT scores

for 7 of them. Among all groups participating in

CASP9 refinement, four of our 11 predictions (tar-

gets TR517, TR568, TR569, and TR517) fall in the

top 10% of all submissions, and eight of the 11 reside

in the top 25% of all submissions, thereby outper-

forming several of the more costly all atom refine-

ment methods. The improvements are achieved for

targets with a wide range of starting GDTs (>50).

The GDT/RMSD for TR569 improves from 73.1/3.01

Å to 76.58/2.24 Å, and our method ranks fourth out

of the 121 total submissions for this target. The

starting values for TR568 are lower at 53.35/6.39 Å,

Figure 6. InsEnds predictions for CASP9 refinement targets. Difference between CA/CA distance across the sequence of the

initial (starting) /native and final (refined using InsEnds method)/native after superposition using sequence-dependent LGA

protocol. Official data from CASP9 official website (http://predictioncenter.org/casp9/). For each target, the arrows indicate

the regions where the InsEnds modeling has been performed. The blue to green color change designates regions where the

InsEnds modeling improves upon the given target based on LGA superposition to native structures.
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and we improve them to 56.7/5.1 Å with an overall

ranking of sixth out of the 127 submissions for the

target. Our method performs much worse than the

rest of the methods for one target, TR592, presum-

ably because the starting structure is already

extremely good (91.2/1.2 Å) so that our Cb level rep-

resentation is inadequate, and, consequently, an all

atom side chain representation is required to

improve the model further. Moreover, we have not

refined the side chains in any of the cases, some-

thing that probably would have improved the results

even more.

Figure 6 displays all our predictions for the

refinement targets in CASP9. The figure illustrates

how well the model aligns to the native structure

before refinement (initial) and after refinement (af-

ter) when superposed using the LGA program.30 The

improvements introduced into the local region also

help to align the remainder of the protein in several

cases. For example, in TR614, even though the

actual regions modeled are an insertion from 33 to

50 and the C terminal residues from 106 to 121, the

local alignment of the N terminal residues improves

over the starting model as indicated with blue in the

LGA alignment for TR614 in Figure 6.

Molecular replacement results for CASP9

refinement targets

One of the CASP9 refinement metrics assesses how

well the predicted models reproduce the experimen-

tal data.31 Recently, models generated by the struc-

ture prediction methods have been inserted into the

molecular replacement likelihood algorithms for X-

ray crystallographic refinement to solve the phase

problem.32,33 The assessors for CASP9 refinement

judge the quality of each submitted model in this

regard by calculating the Z-score of the best orienta-

tion of the model in the unit cell of the crystal com-

pared to placing it in a set of random orientations.

Only models with Z-scores above 6 are considered

good enough to solve the phase problem. Table 3 in

Ref. 31 summarizes how often various groups

improve the Z-score of the targets from likely unre-

finable (<7) to likely refinable (>7). Our method per-

forms as well or better than all the other groups in

this test, with positive results in two of three cases

attempted. As our approach uses a backbone þ Cb

model with the side chains either missing or added

simply using SCWRL4.0 with no further refinement,

some of our submitted models were discarded in the

analysis by assessors. Regardless, the fact that our

method ranks at the top in the molecular replace-

ment test proves its real value in X-ray crystal

structure refinement.

In contrast to most other methods that expend

considerable computing resources on including all-

atom interactions, our method lacks explicit side

chain atoms. This difference highlights the distinc-

tion between the refinement of crystal structures

and template-based models. The all atom refinement

of crystal structures benefits from having high-reso-

lution information for the rest of the structure,

whereas homology models are usually far from per-

fect. It is unclear whether the expensive modeling of

all the atoms in an imperfect environment provides

a computationally efficient strategy. In contrast, the

first step of our approach is designed to obtain the

proper backbone structure and orientation for the

local region by using a coarse level of modeling that

is less sensitive to the atomic level details for the

rest of the homology model. Once the coarse level

model is obtained for the local region, side chains

may be added, and more detailed all-atom refine-

ment can proceed.

Global InsEnds RMSD versus local InsEnds

RMSD

RMSDs are calculated in three ways to help quantify

the quality of the modeling of local InsEnds regions:

1. Local InsEnds RMSD: Align the loop and calcu-

late the RMSD of only the InsEnds region.

2. Global InsEnds RMSD: Align all the residues

besides the InsEnds, and then calculate the

RMSD of the InsEnds region.

3. Global structure RMSD: Optimally align all the

residues in the protein and calculate the RMSD

of the full chain.

The local InsEnds RMSD is a measure of how

well the InsEnds region itself is modeled, and the

global InsEnds RMSD provides a measure of how

well the modeled InsEnds is oriented with respect to

the rest of the protein. The global InsEnds RMSD is

the ideal measure of loop quality when predicting

loops in crystal structures because the only differ-

ence between the native structure and the model

can appear in the loop region. In contrast, InsEnds

modeling of homology models begins from inexact

structures; therefore, assessing the refinements

requires accounting for the RMSD of the rest of the

structure (besides the InsEnds) with respect to the

native structure. If the starting homology model

deviates significantly from the native structure, the

alignment of the non-InsEnds region necessarily

must skew the anchor regions, and therefore the

global InsEnds RMSD would not provide as good a

metric for reporting the accuracy of InsEnds model-

ing as does either the local InsEnds RMSD or the

overall RMSD of the structure.

This utility of the different RMSDs is illustrated

for six targets from CASP8 for which the initial

RAPTOR models have variable RMSDs to the native

structures. The 11–12 residue InsEnds regions in

those models are chosen for (post-dictum) prediction

using our method (Table V). Not surprisingly, the
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global InsEnds RMSD is highly dependent on the

quality of the initial model (i.e., the RMSD of all but

the InsEnds region in the initial model). For target

T0478D1, the RMSD of the non-InsEnds region in the

starting model is 8.07 Å; the best local InsEnds

RMSD decreases from 2.9 Å to 1.58 Å, whereas the

best global InsEnds RMSD decreases from 12.2 Å to

8.4 Å.

Target T0411D1 has a non-InsEnds RMSD of the

starting model much closer to native structure at

2.74 Å, and our local InsEnds RMSD improves from

3.53 to 1.85 Å, similar to the local InsEnds RMSD

improvement in T0478D1 (2.9 to 1.58 Å). However,

the global InsEnds RMSD for this target improves

from 10.2 to 2.78 Å, which is much more remarkable

than the global InsEnds RMSD in T0478D1 (12.2 to

8.4 Å). The difference can be attributed to T0411D1’s

starting model having the non-InsEnds region much

closer to the native structure when compared with

T0478D1. Figure 7 illustrates this behavior and indi-

cates that the local InsEnds RMSD remains rela-

tively unaffected, whereas the global InsEnds RMSD

for the same targets is quite severely affected by the

RMSD of the remaining region. The successes of the

modeling also support our previous contention from

protein structure predictions that the neighbor-de-

pendent /,w distributions capture local interactions

reasonably well.20

Applications to protein folding simulations
Although loop modeling is often called the ‘‘mini-

folding problem,’’ traditional approaches to loop mod-

eling do not consider the folding mechanism whenT
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Figure 7. Global versus local RMSD. The RMSD of non

InsEnds region is plotted against the global InsEnds RMSD

(red) and local InsEnds RMSD (blue) for six CASP8 targets.

The global InsEnds RMSD is affected severely by the

quality of the homology model. [Color figure can be viewed

in the online issue, which is available at

wileyonlinelibrary.com.]
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predicting loops. Our method on the other hand,

views local modeling in a fashion that fits naturally

into the larger problem of protein folding.

Experimental studies indicate that proteins fold

through sequential stabilization of tertiary structure

elements or foldons.34–37 Often, long-range contacts

form early in the folding pathway and produce inter-

mediate species where some entrained local regions

are not yet folded. Hence, a computational scheme

designed to predict structure by mimicking the natu-

ral stepwise fashion of folding pathways should en-

counter the problem of folding inside of loops.

Our InsEnds algorithm is well suited to address

this problem because the undetermined local regions

in the structure that arise during the folding path-

way can correspond to distinct secondary structures,

loops, or to combinations thereof. As a proof of prin-

ciple, we test our method by predicting native struc-

tures of possible intermediates in the pathways for

folding two proteins: ubiquitin and barnase.

The late-folding intermediate in ubiquitin lacks

the 310 helix and the b5 strand, while the rest of the

structure is well formed34,38 [Fig. 8(B)]. Starting

from a native-like structure for the intermediate,

the InsEnds algorithm is used to fold the 18-residue

insertion. The InsEnds refinement procedure suc-

cessfully recovers the native structure to a global

RMSD of 1.6 Å [Fig. 8(C)]. This illustrates an exam-

ple where the local region is neither a loop nor a

continuous secondary structure. Nevertheless, we

still obtain the right topology, essentially completing

the last step of the folding pathway to predict to the

native structure.

Barnase is a 108-residue protein that is atypical

for a small protein because it contains three distinct

hydrophobic cores. The two hairpin loops depicted in

Figure 8(D) are crucial to the structure because they

are involved in formation of the protein’s cores, and,

therefore, the correct prediction of the loops is essen-

tial for the prediction of the global structure. Experi-

ments indicate that loop 2 is the last structure to form

in the folding pathway.36 When the InsEnds method

is used to fold both the 10 and 15 residue loops in bar-

nase [Fig. 8(E,F)], our best predictions in both cases

lie in the top clusters, and the best global RMSDs are

2.03 Å and 1.27 Å for loops 1 and 2, respectively.

The problem of folding inside of loops highlights

two aspects of our method. The first is that our

approach treats local and global structure prediction

similarly by mimicking the natural protein folding

mechanism. The second aspect is the demonstration

that given the correct boundaries, our method is

able to reconstruct the local structures irrespective

of whether the local regions are well defined second-

ary structures or loops.

Simultaneous folding of multiple InsEnds

One crucial feature of our approach is the ability to

simultaneously model multiple local regions. When

the regions are interacting, simultaneous modeling

Figure 8. InsEnds algorithm applied to protein folding pathways. A: The b5 and 310 helix in ubiquitin are the last structures to

form in the pathway. Their structures are depicted as disordered in the model (B) of the folding intermediate and (C) predicted

using the InsEnds algorithm. D: Barnase native structure highlighting the two hairpin loops that are part of two different cores,

and (E) and (F) predictions of the loops using InsEnds algorithm, respectively. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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can be essential because the context provided by one

local region may be important in guiding the other

into place. A good example is the CASP target TR606,

where the InsEnds correspond to the two termini that

form a hydrogen-bonded pair of b strands. The initial

template model fails to identify the ends as strands,

and, therefore, the ends are wrongly placed. Accurate

modeling requires that they be folded simultaneously.

Guided only by the orientationally dependent DOPE-

PW energy function, we have modeled the free ter-

mini and correctly predicted the pair of strands in our

top submission [Fig. 5(G)].

Protein structure prediction pipeline
One of our goals is to combine the respective

strengths of free modeling with template-based mod-

eling for an integrated structure prediction pipeline.

This goal is realized through an automated server,

created for CASP9 that integrates the InsEnds, RAP-

TOR-X and ItFix methods. Given a sequence, the

pipeline begins by performing homology modeling

using RAPTOR-X. If no templates are identified, the

pipeline directs the sequence for free modeling using

our existing ItFix algorithm for secondary and terti-

ary structure prediction. If RAPTOR is able to build a

template-based model, the InsEnds are modeled to

obtain a final structure. The pipeline has been used

for the CASP9 structure predictions of the Midway-

Folding group (CASP9 group numbers 435 and 477).

Conclusions

Loop modeling has been an on-going challenge in pro-

tein structure prediction. With the recent surge in

template-based modeling, InsEnds modeling is a rela-

tively new topic in need of novel approaches. Previous

methods have focused on loops in the context of crystal

structures and may not be generalizable to treat

imprecise template-based models. InsEnds pose a

more complicated situation where the poorly predicted

local regions must be modeled without assumptions

concerning the accuracy of the rest of the structure or

the boundaries and secondary structure of the local

regions being modeled. This work presents a novel

free-modeling method for local protein structure pre-

diction that is applicable for modeling large local

regions in both exact and inexact environments, as

demonstrated by results both for loops in crystal struc-

tures and for InsEnds in template-based models. We

consider this result as a step towards the generaliza-

tion of the local protein structure problem. The work

also presents a framework in which free and template-

based modeling are integrated, with the aim of closing

the final gaps in protein structure prediction.

Methods

All backbone heavy atoms are explicitly treated,

whereas the side chains are represented by single

Cb atoms.20,21 The backbone bond lengths and angles

are fixed at their ideal values, and only backbone

torsional angles /,w are sampled during the simula-

tion. Loop closure is achieved by ligating the free

ends of the loops to the beginning of the subsequent

chain with a harmonic constraint whose strength

increases as 1/Temperature during the MCSA proce-

dure (Fig. 3).

Ramachandran map (Pivot) move set and

sampling
The study uses our approach for sampling single-res-

idue (/,w) backbone torsional angles.21 A distribu-

tion of /,w angles is generated from a high-resolu-

tion library of PDB structures for each amino acid

(aa), conditional on the identity of the flanking

amino acids. These NN-dependent torsional angle

distributions are precalculated for all 20 aas, result-

ing in 8000 total Rama Maps that are divided into

5� � 5� bins. During each Monte Carlo step, a

selected residue’s /, w angles are changed. Besides

the identity of the NNs, the Rama Maps can also be

restricted according to secondary structure of the aa

and its NNs. The data presented in the paper, how-

ever, are obtained without the imposition of this

restriction, thereby enabling the exploration of all

regions of torsional space allowed for a given amino

acid based on its neighbor’s identity. The only excep-

tion to this is the CASP8 target T0464, where five of

the 24 residues are restricted to helical angles as

the PSIPRED program39 predicts them to be helical

with high confidence.

Energy functions

The conformational search is guided through the

simulation by an energy function that is a combina-

tion of the pairwise, orientation-dependent statisti-

cal potential DOPE-PW20 and a harmonic ligation

term for the closure of the loop:

E ¼ EDOPE�PW þ Tk

T
½ðD�D0Þ2 þ ðL� L0Þ2�

where T is the simulation temperature, D/D0 are the

current/initial distances between the two anchor

points, and L/L0 are the distances between the free

end and the anchor point at the site of the cut. The

ligation term becomes stronger as the simulated

annealing temperature decreases. The initial tem-

perature of the simulations is set to 100, and Tk is

chosen such that the contributions from the DOPE-

PW and ligation energies become comparable by the

end of the simulation.

The interactions in DOPE-PW are parameter-

ized based on the observed distance distributions in

the PDB, contingent on neighbors, amino acid iden-

tities, secondary structures, and side chain orienta-

tions. DOPE-PW has been demonstrated to perform
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well in guiding the conformational search during

prediction of the structure of small proteins. The

DOPE-PW term initially dominates the total energy

and provides greater freedom for the conformational

search, thereby aiding in properly orienting the loop

with respect to the rest of the structure.

Scoring
Once the set of final conformations is generated

from the MCSA simulations, the best candidate in

this set of conformations is chosen by using a combi-

nation of quantities computed from clustering,

DOPE-PW energies, and solvent accessibility.

Clustering

Clustering based on the Ca RMSD provides a very

effective means of identifying dominant conforma-

tions. Hierarchical clustering proceeds with a dis-

tance cutoff of 5 Å, using the minimum distance

method with the Cluster module in Biopython.40 Tri-

als with distance cutoffs of 4 Å and 6 Å do not signifi-

cantly alter the results. Clustering is used only when

the largest cluster contains at least 5% of the total

structures. The clusters are ranked as detailed in the

Results section, while the best individual structures

are selected according to the sum of the DOPE-PW

energy and the solvent accessible surface area

(SASA).

Loop regions reside mostly on the protein sur-

face, and thus, solvent interactions can be crucial

determinants of loop structures. Hence, most suc-

cessful loop scoring schemes include an approximate

measure for the extent of solvation as part of the

scoring function.14,15,17 While the DOPE-PW energy

function accurately describes the preferred orienta-

tions of the side chains of both hydrophilic and

hydrophobic residues as being directed away and to-

ward solvent, respectively, the interactions are still

assumed to be pairwise additive between CaACb

bond vectors and thus do not explicitly treat the sol-

vent accessibility. Since explicit side chains are

absent during the sampling stage, the program

SCWRL 4.041 is used to add side chains to enable

calculating the SASA using a rapid approximation

with a water radius of 1.4 Å.42 The SASAs of each

residue are assigned into hydrophobic and hydro-

philic components, and the structure that minimizes

the hydrophobic ASA and maximizes the hydrophilic

ASA is presumed to have the best ASA score. For

this purpose, the structures are ranked by using

both the hydrophobic and hydrophilic ASAs, and the

combined rank is taken as the net ASA score.

MCSA simulation procedure

The initial torsional angles of the InsEnds are ran-

domly chosen so that no prior information is

retained regarding its conformation, while the rest

of the protein structure is kept fixed. A total of 700–

1000 independent MCSA trajectories are run using

the energy functions described above. Each step of

the MCSA trajectory involves selection of a random

amino acid in the InsEnds whose torsional angle is

modified according to the pregenerated NN-depend-

ent Rama map for that amino acid. This results in a

new InsEnds conformation whose energy is eval-

uated, and the conformation is either accepted or

rejected based on the Metropolis criteria at that tem-

perature using the energy functions described above.

The temperature is updated every 500 Monte Carlo

steps, using a polynomial time cooling schedule.26

The simulation protocol has been implemented in a

C library, called the Protein Library, and the input/

output is handled by using the PDB tools from the

Biopython package.

Parallel scripting

The InsEnds algorithm has been implemented for

high throughput structure prediction using the par-

allel scripting language, Swift.43 Swift enables the

algorithm to be expressed in a high-level logical

manner independent of any specific computing

resources. Swift automatically parallelizes the inde-

pendent invocations of the lower-level protein struc-

ture manipulation programs, which are written in

Python and C. Swift further provides the flexibility

of running on multiple, different, parallel architec-

tures by automating job scheduling and error han-

dling, and it logs the provenance of all data objects

produced.
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